

SAR^SW^TI Institute of Technology

* "Mathematics is king of art; queen of sciences."
* "If you fail never give up because F.A.I.L means "first attempt in learning".
* "If people do not believe that mathematics ís simple they do not realize how complicated life is."
* "Mathematics is a great motivator for all humans because its career starts with zero but never end (infinity).
* " Life is good for only two things; discovering mathematics and teaching mathematics"

Rules of $(+,-, \times, \div)$:


```
R = Set of Real Numbers
\[
\mathrm{R}=\quad\{\mathrm{xC}(\mathrm{Q} \mathrm{U} \mathrm{Q})\}
\]
```


Plot No. 46, sector 5
Near MSEB sub station, Kharghar
Navi Mumbai 410210

LAW OF INDICES:

i) $a^{m} x a^{n}=a^{m+n}$
ii) $a^{m} \div a^{n}=a^{m-n}$
vii) $\mathrm{e}^{œ}=\infty$
iii) $\left(a^{m}\right)^{n}=a^{m n}$
iv) $\left(a^{-n}\right)=\frac{1}{a^{n}}$
v) $a^{0}=1, a \neq 0$
vi) $(a b)^{m}=a^{m} b^{m}$

RULES OF LOGARITHM:

If $a^{s}=b$ then $x=\log _{a} b$
ii) $\log _{m} a^{n}=n \log _{m} a$
iii) $\log _{m} a+\log _{m} b=\log _{m} a b$
v) $\log _{m} m=1, m>0, m \neq 1$
vii) $\log _{0}$ 1
$\log _{a} b$
iv) $\log _{m} a-\log _{m} b=\log _{m_{B}} a$
vi) $\log _{b} a=\frac{\log _{m} a}{\log _{m} b}$
a, $b, m>0$
viii) $a^{\log _{a} f(s)}=f(x)$
i) $\log 1=0$ (any base)

Factorization Formula:-

$$
\begin{array}{ll}
(a+b)^{2}=a^{2}+2 a b+b^{2} & (a-b)^{2}=a^{2}-2 a b+b^{2} \\
(a+b)^{3}=a^{3}+3 a^{2} b+3 a b^{2}+b^{3} & (a-b)^{3}=a^{3}-3 a^{2} b+3 a b^{2}-b^{3} \\
a^{3}-b^{3}=(a-b)\left(a^{2}+a b+b^{2}\right) & \left(a^{3}+b^{3}\right)=(a+b)\left(a^{2}-a b+b^{2}\right) \\
a^{2}-b^{2}=(a-b)(a+b) & \\
(a+b+c)^{2}=a^{2}+b^{2}+c^{2}+2 a b+2 b c+2 a c
\end{array}
$$

Plot No. 46, sector 5
Near MSEB sub station, Kharghar
Navi Mumbai 410210

SEM -I BASIC MATHEMATICS

Determinants: An arrangement of numbers in equal number of rows and columns between two vertical lines. Denoted by D or Δ

Eg.

$$
\mathrm{D}=\begin{array}{ccc}
1 & 6 & 9 \\
5 & 2 & -2 \\
0 & 3 & 4
\end{array}=1[(4 * 2)-(-2 * 3)]-6[(5 * 4)-(-2 * 0)]+9[(5 * 3)-(2 * 0)]=29
$$

Cramer's rule :-

$$
D=\begin{aligned}
& a_{1} b_{1} \\
& a_{2} \\
& b_{2}
\end{aligned}, \quad D_{x}=\begin{aligned}
& c_{1} b_{1} \\
& c_{2} b_{1}
\end{aligned}, \quad D_{y}=a_{1} c_{1} a_{2} c_{2}
$$

Three Unknowns: $\mathrm{a}_{1} \mathrm{x}+\mathrm{b}_{1} \mathrm{y}+\mathrm{c}_{1} \mathrm{z}=\mathrm{d}_{1}, \mathrm{a}_{2} \mathrm{x}+\mathrm{b}_{2} \mathrm{y}+\mathrm{c}_{2} \mathrm{z}=\mathrm{d}_{2}, \mathrm{a}_{3} \mathrm{x}+\mathrm{b}_{3} \mathrm{y}+\mathrm{c}_{3} \mathrm{z}=\mathrm{d}_{3}$

Matrix: Matrix is an arrangement of $m \times n$ numbers enclosed in a square bracket along with m rows and n columns. eg :- $\left[\begin{array}{cc}1 & -1 \\ 2 & 3\end{array}\right] \quad$ order is 2×2

Types of Matrices

1) Row Matrix: - A Matrix is having only one row.

Eg. [a b c]
2) Column Matrix :- A matrix having only one column
eg.
$\left.\begin{array}{l}a \\ b \\ c\end{array}\right)$
3) Square matrix :- A Matrix having same number of rows and columns
($\mathrm{m}=\mathrm{n}$)
eg.

4) Diagonal Matrix: A square matrix whose all non diagonal elements are zero.

5) Scalar Matrix: -A Díagonal matrix whose all digonal element are equal.

$$
\text { eg. }\left(\begin{array}{lll}
2 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 2
\end{array}\right) \quad 3 \times 3
$$

6) Identity / Unit Matrix:

$$
I=\left(\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}\right) 2 \times 2 \quad I=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) 3 \times 3
$$

7) Symmetric matrix $=A$ square matrix in which $\mathrm{a}_{\mathrm{ij}}=\mathrm{a}_{\mathrm{j} i}, i \neq \mathrm{j}$
eg. $\left[\begin{array}{lll}a & b & c \\ b & d & e \\ c & e & f\end{array}\right]$
8) Skew symmetric matrix: A square matrix in which $a_{i j}=-a_{j i}, i \neq j$ and diagonal elements are zero .

9) A square matrix ' A ' is singular if $\quad|A|=0$
is Nonsingular if $|A| \neq 0$
10) Transpose of square matrix is obtained by interchanging rows and columns. It is denoted by A^{T} or A^{1}

- $(A+B)^{T}=(A)^{T}+(B)^{T}$
- $(A B)^{T}=(B)^{T}(A)^{T}$
- $\left(\mathrm{A}^{\mathrm{T}}\right)^{\mathrm{T}}=(\mathrm{A})$

11) Adj. A is Transpose of co-factor matrix.
12) Inversion method: $X=A^{-1} B$

$$
A^{-1}=\frac{1}{|A| A \mid} \operatorname{adj} A,|A| \neq 0
$$

Partial Fraction: Partial Fraction is method of rewriting the fractions into simple fraction.

Type I: D^{r} has distinct linear factors
$\underset{(\mathrm{ps}+\mathrm{q}}{\mathrm{b})(\mathrm{cs} \pm \mathrm{d})} \underset{(\mathrm{as} \pm \mathrm{b})}{Æ}+\underset{(\mathrm{cs} \pm \mathrm{d})}{\mathrm{B}}$, where A and B are Constants to be determined.
Type $\mathbf{I I}=\mathrm{D}^{\mathrm{r}}$ has repeated factors:

Type III : D^{r} has quadratic irreducible factors

$$
\frac{p s+q}{\left(a_{1} s^{2} \pm b_{1} s \pm c_{1}\right)\left(a_{2} s^{2} \pm b_{2} s \pm c_{2}\right)}=\frac{a s+b}{\left(a_{1} s^{2} \pm b_{1} s \pm c_{1}\right)}+\frac{c s+d}{\left(a_{2} s^{2} \pm b_{2} s \pm c_{2}\right)}
$$

-Proper fraction: $\operatorname{deg} N^{r}<\operatorname{deg} D^{r}$-Improper fraction: $\operatorname{deg} N^{r} \geq \operatorname{deg} D^{r}$

Trigonometry:

1) Trigonometric Ratios:

In $\triangle \mathrm{ABC},<\mathrm{B}=90,<\mathrm{A} \&<\mathrm{C}$ are acute angles.

$$
\tan \theta=\frac{\text { Oppocite Side }}{\text { adjuccent cide }}=\frac{\notin B}{B C}, \cot 8=\frac{\text { Ædjuccent Side }}{\text { Oppocite cide }}=\frac{B C}{\boxed{E B}}
$$

Trigonometric Table :-

T.ratios Angles	O°	30°	45°	60°	90°	180°
Sine	0	$1 / 2$	$1 / \sqrt{2}$	$\sqrt{3 / 2}$	1	0
Cosine	1	$\sqrt{3} / 2$	$1 / \sqrt{2}$	$1 / 2$	0	-1
Tan	0	$1 / \sqrt{3}$	1	$\sqrt{3}$	∞	0
Cot	∞	$\sqrt{3}$	1	$1 / \sqrt{3}$	0	∞
Sec	1	$2 / \sqrt{3}$	$\sqrt{2}$	2	∞	-1
Cosec	∞	2	$\sqrt{2}$	$2 / \sqrt{3}$	1	∞

$\operatorname{Sin}^{2} \theta+\cos ^{2} \theta=1$

Sign of Trigonometric Ratios :

S^R^SWATI Institute of Technology

Trigonometric Ratios of Negative angle :
$\operatorname{Sin}(-8)=-\sin 8 \operatorname{Cosec}(-8)=-\operatorname{Cosec} 8$
$\operatorname{Cos}(-8)=\operatorname{Cos} 8 \operatorname{Sec}(-8)=\operatorname{Sec} 8$
$\tan (-8)=-\tan 8 \operatorname{Cot}(-8)=-\operatorname{Cot} 8$
COMPOUND ANGLES:-

$$
\begin{array}{ll}
\sin (\pi / 2-8)=\cos 8 & \sin (\pi / 2+8)=+\cos 8 \\
\cos (\pi / 2-8)=\sin 8 & \operatorname{Cos}(\pi / 2+8)=-\sin 8 \\
\tan (\pi / 2-8)=\cot 8 & \tan (\pi / 2+8)=-\cot 8 \\
\cot (\pi / 2-8)=\tan 8 & \cot (\pi / 2-8)=-\tan 8
\end{array}
$$

S^R^SWへTI Institute of Technology

$$
\begin{array}{ll}
\operatorname{Sec}(\pi / 2-8)=\operatorname{cosec} 8 & \operatorname{Sec}(\pi / 2-8)=-\operatorname{cosec} 8 \\
\operatorname{Cosec}(\pi / 2-8)=\sec 8 & \operatorname{Cosec}(\pi / 2+8)=+\sec 8
\end{array}
$$

$S \wedge R \wedge S W \wedge T I$ Institute of Technology

Non transformation Angles.

$1-\cos 28=2 \sin ^{2} 8$	$1-\operatorname{Cos} 8=2 \operatorname{Sin}^{2} 8 / 2$
$1+\operatorname{Sin} 28=(\operatorname{Cos} 8+\operatorname{Sin} 8)^{2}$	$1+\operatorname{Sin} 28=(\operatorname{Cos} 8 / 2+\operatorname{Sin} 8 / 2)^{2}$
$1-\operatorname{Sin} 28=(\operatorname{Cos} 8-\operatorname{Sin} 8)^{2}$	$1-\operatorname{Sin} 28=(\operatorname{Cos} 8 / 2-\operatorname{Sin} 8 / 2)^{2}$
$\operatorname{Sin} 38=3 \operatorname{Sin} 8-4 \operatorname{Sin}^{3} 8$	$\operatorname{Cos} 38=4 \operatorname{Cos}^{3} 8-3 \cos 8$
$\tan 38=$$3 \tan 8-\tan ^{3} 8$ $1-3 \tan 28$	

Factorization formula
$\operatorname{SinC}+\operatorname{Sin} D=2 \sin \left(\frac{C+D}{2}\right) \cos \left(\frac{C D}{2}\right)$
$\operatorname{SinC}-\operatorname{SinD}=2 \cos \left(\frac{C+D}{2}\right) \sin \left(\frac{C-D}{2}\right)$
$\operatorname{Cos} C+\operatorname{Cos} D=2 \operatorname{Cos}\left(\frac{C+D}{2}\right) \cos \binom{C-D}{2}$
$\operatorname{Cos} C-\operatorname{Cos} D=-2 \sin \binom{C+D}{2} \sin \binom{C-D}{2}$
$S-S=2 C S$

Defactorization formula

$2 \sin \mathrm{C} \operatorname{Cos} \mathrm{B}=\operatorname{Sin}(\mathrm{A}+\mathrm{B})+\operatorname{Sin}(\mathrm{A}-\mathrm{B})$
$2 \operatorname{Cos} A \operatorname{Sin} B=\operatorname{Sin}(A+B)-\operatorname{Sin}(A-B)$
$2 \operatorname{Cos} A \cos B=\cos (A+B)+\cos (A-B)$
$-2 \operatorname{Sin} \mathrm{~A} \operatorname{Sin} \mathrm{~B}=\operatorname{Cos}(\mathrm{A}+\mathrm{B})-\operatorname{Cos}(\mathrm{A}-\mathrm{B})$

Cøntact us:9372844023/7738376831
Plot No. 46, sector 5
Near MSEB sub station, Kharghar
Navi Mumbai 410210

S^R^SW^TI Institute of Technology

Inverse Trigonometry

Contact us:9372844023/7738376831
Plot No. 46, sector 5
Near MSEB sub station, Kharghar
Navi Mumbai 410210

S^R^SW^TI Institute of Technology

$$
\tan ^{-1} x-\tan ^{-1} y=\tan ^{-1}\left(\frac{s-y}{1+s y}\right)
$$

Straight line

Slope: If line makes an angle 8 with + ve direction of x -axis then slope of line is $\mathbf{m}=$ $\boldsymbol{t a n} 8$.
2) Slope of line joining the points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ is given by
3) Slope of line $a x+b y+c=0$ is $\int_{b}^{-a}=-{ }_{\text {coeff of } y}$

Two lines are parallelif and if only if their slopes are equal $\left(\mathrm{m}_{1}=\mathrm{m}_{2}\right)$
Two lines are perpendicular if and only if product of their slop is $-1 .\left(m_{1} m_{2}=-1\right)$

Equations of line:-

1) Slope point form: $y-y_{1}=m\left(x-x_{1}\right)$
2) Two point form: ${ }^{y-y_{1}}=\underline{s-s_{1}}$
3) intercept form: $y=m x+c$, where m is slope, c is y intercept of line.
4) Double intercept form: ${ }^{s}+{ }^{y}=1$, where a and b are x and y intercepts resp.
5) Normal form: $\mathrm{x} \cos \alpha+y \sin \alpha$, Where p is length of perpendicular from origin.

- $\quad \mathrm{eq}^{\mathrm{n}}$ of x -axis is $\mathrm{y}=\mathrm{o}$
- $\quad q^{n}$ of y-axis is $x=0$

S^R^SW^TI Institute of Technology

* Equation of lines parallel to x -axis is $\mathrm{y}= \pm \mathrm{k}$
* Equation of lines parallel to Y -axis is $\mathrm{X}= \pm \mathrm{k}$

- Three points $\mathrm{A}, \mathrm{B}, \mathrm{C}$ are collinear \Rightarrow slope of $\mathrm{AB}=$ slope of BC $=$ slope of AC.
- Distance formula :if $\mathrm{A}\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right), \mathrm{B}\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)$ then
- Perpendicular distance of point $\mathrm{p}\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ to the line $\mathrm{ax}+\mathrm{by}+\mathrm{c}=0$
is $\left|\frac{{ }^{a x_{1}}+b y_{1}+c}{\sqrt{a^{2}+b^{2}}}\right|$
- Distance between two parallel lines $a x+b y+C_{1}=0 \& a x+b y+c_{2}=0$
is $\left|\frac{C_{1}-C_{2}}{\sqrt{a^{2}+b^{2}}}\right|$
- Acute angle 8 between two lines having slope m_{1} and m_{2} is given by

$$
\tan 8=\left|\frac{m_{1}-m_{2}}{1+m_{1} m_{2}}\right|
$$

$$
d(A B)=\boldsymbol{J} \overline{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}
$$

Midpoint formula: - midpoint of line joining the points.
$A\left(x_{1}, y\right)$ and $B\left(x_{2} y\right)$ is $x=\frac{s_{1}+s_{2}}{2}, y=\frac{y_{1}+y_{2}}{2}$

- Centroide formula: $G\left(x_{1}, y_{1}, z_{1}\right)$ of $\triangle A B C$ with vertices

$$
\begin{aligned}
& \mathrm{A}\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right), \mathrm{B}\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right) \& \mathrm{C}\left(\mathrm{x}_{3}, \mathrm{y}_{3}\right) \text { is } \\
& \mathrm{X}=\frac{\mathrm{x}_{1}+\mathrm{x}_{2}+\mathrm{x}_{3}}{3} \quad \mathrm{Y}=\frac{\mathrm{y}_{1}+\mathrm{y}_{2}+\mathrm{y}_{3}-}{3}
\end{aligned}
$$

Statistics

Mean Deviation: \rightarrow it is an absolute measure of dispersion.
It is the arithmetic mean of all the absolute deviations from any one of its average (means or median)

Mean Deviation (M.D)

Raw Data	Ungrouped Data	Grouped Data
i) M.D. about mean $=\xrightarrow[N]{\Sigma\left\|\mathrm{d}_{\mathrm{i}}\right\|} \mathrm{di}=\left\|\mathrm{X}_{\mathrm{i}}-\overline{\mathrm{x}}\right\|$ $\overline{\mathrm{X}}=$ mean of observations	i) M.D. about man: $\begin{aligned} & =\frac{\sum \mathrm{f}_{\mathrm{i}}\left\|\mathrm{~d}_{\mathrm{i}}\right\|}{N} \\ & \mathrm{di}=\left\|\mathrm{x}_{\mathrm{i}}-\overline{\mathrm{X}}\right\| \end{aligned}$	i) M.D about mean $\begin{aligned} & =\frac{\sum \mathrm{f}_{\mathrm{i}} \mathrm{~d}_{\mathrm{i}} \mid}{\mathrm{N}} \\ & \mathrm{di}=\left\|\mathrm{X}_{\mathrm{i}}-\overline{\mathrm{X}}\right\| \end{aligned}$
ii) M.D. about median $=\frac{\Sigma\|\mathrm{d} i\|}{N}, d i=\|\underset{i}{x}-M\|$ $\mathrm{M}=$ median of obs	ii) M.D. about median $\begin{aligned} & =\frac{\sum \mathrm{f}_{\mathrm{i}} \mathrm{~d}_{\mathrm{j}} \mid}{\mathrm{N}} \\ & \mathrm{di}=\left\|\mathrm{x}_{\mathrm{i}}-\mathrm{M}\right\| \end{aligned}$	ii) M.D. about median $\begin{aligned} & =\frac{\sum \mathrm{f}_{\mathrm{i}}\left\|\mathrm{~d}_{\mathrm{i}}\right\|}{N} \\ & \mathrm{di}=\left\|\mathrm{x}_{\mathrm{i}}-\mathrm{M}\right\| \end{aligned}$ $\mathrm{xi}=$ mid values of C.I.

Standard Deviation (S.D) -S.D is most absolute measure of dispersion. It is denoted by

Sem - II

Complex Number

i) Def ${ }^{n}$: - A number of the form $a+i b$ where $a, b c R \& i=\sqrt{-1}$ is called a complex number, it is denoted by ' Z '.
$\mathbf{Z}=\mathbf{a}+\mathbf{i b}$ Where a is real part $\& b$ is imaginary part,i is imaginary number.
ii) Conjugate of complex number:-
if $Z=a+i b$ is a complex number, its conjugate is $\bar{Z}=a-i b$
iii) Modulus of complex number:-

If $Z=a+i b$, its modulus $|z|=r=\sqrt{ } a^{2}+b^{2}$
iv) Co-ordinate (a, b) represents a complex number $\mathrm{a}+\mathrm{ib}$
v) Argument of Complex number:- If $Z=a+i b$, its Argument is

S^R^SW^TI Institute of Technology

vi) Polar form of complex number:-

$$
\mathrm{z}=\mathrm{r}(\cos 8+\mathrm{i} \sin 8)
$$

Where $r=|z|=\sqrt{a^{2}+b^{2}}$
vii) De-moivre's Theorem: \rightarrow
i) $[\cos 8+i \sin 8]^{n}=\cos n 8+i \sin n 8$
ii) $[\cos 8+i \sin 8]^{-n}=\cos n 8-i \sin n 8$
viii) Exponential form:

$$
\begin{aligned}
& z=r e^{i 8}=r[\cos 8+i \sin 8] \\
& z=r e^{-i 8}=r\left[\cos 8-i \sin 8 \quad e^{-i 8}=[\cos 8-i \sin 8]\right. \\
& \text { ix) Euler's formula :- }
\end{aligned}
$$

S^R^SWATI Institute of Technology

Numerical methods

1) Bisection Method: if root lies in (a, b) then
2) Regula falsi method: if root lies in (a, b) then $x_{1}=\frac{a f(b)-b f(a)}{f(b)-f(a)}$
3) Newton Raphson method: if x_{0} is initial root then $X_{n+1}=X_{n}-\left[\begin{array}{c}f\left(s_{n}\right) \\ f\left(s_{n}\right)\end{array}\right]$
4) Gauss elimination method: To solve the equations
$\mathrm{a}_{1} \mathrm{x}+\mathrm{b}_{1} \mathrm{y}+\mathrm{c}_{1} \mathrm{z}=\mathrm{d}_{1}, \mathrm{a}_{2} \mathrm{x}+\mathrm{b}_{2} \mathrm{y}+\mathrm{c}_{2} \mathrm{z}=\mathrm{d}_{2}, \mathrm{a}_{3} \mathrm{x}+\mathrm{b}_{3} \mathrm{y}+\mathrm{c}_{3} \mathrm{z}=\mathrm{d}_{3}$, eliminate the variables $\mathrm{x}, \mathrm{y}, \mathrm{z}$ by solving them simultaneously.
5) Jacobis Method : Consider the system of linear equations
$a_{1} x+b_{1} y+c_{1} z=d_{1}, a_{2} x+b_{2} y+c_{2} z=d_{2}, a_{3} x+b_{3} y+c_{3} z=d_{3}$ by rewriting the given equations x

$$
\begin{align*}
& y={ }_{b_{2}}^{1}\left[d_{2}-a_{2} x-c_{2} z\right] \tag{2}\\
& z={ }_{c_{3}}^{1}\left[d_{3}-b_{3} y-a_{3} x\right]- \tag{3}
\end{align*}
$$

For first Iteration - put $x=y=z=0$ in equation (1),(2)\&(3). We get values of $x_{1}, y_{1} \& z_{1}$
For second Iteration put $\mathrm{x}=\mathrm{x}_{1}, \mathrm{y}=\mathrm{y}_{1}, \mathrm{z}=\mathrm{z}_{1}$ in equation (1),(2)\&(3). We get values of x_{2} , $\mathrm{y}_{2} \& \mathrm{z}_{2}$, and so on.

S^R^SWATI Institute of Technology

Gauss Seidel Method : : Consider the system of linear equations
$\mathrm{a}_{1} \mathrm{x}+\mathrm{b}_{1} \mathrm{y}+\mathrm{c}_{1} \mathrm{z}=\mathrm{d}_{1}, \mathrm{a}_{2} \mathrm{x}+\mathrm{b}_{2} \mathrm{y}+\mathrm{c}_{2} \mathrm{z}=\mathrm{d}_{2}, \mathrm{a}_{3} \mathrm{x}+\mathrm{b}_{3} \mathrm{y}+\mathrm{c}_{3} \mathrm{z}=\mathrm{d}_{3}$ by rewriting the given equations x $=\frac{1}{a_{1}}\left[d_{1}-b_{1} y-c_{1} z\right]$

$$
\begin{align*}
& y=\frac{1}{b_{2}}\left[d_{2}-a_{2} x-c_{2} z\right]- \\
& z={ }_{c_{3}}^{1}\left[d_{3}-b_{3} y-a_{3} x\right]- \tag{3}
\end{align*}
$$

For first Iteration - put $y=z=0$ in equation (1). We get values of x_{1}
Put $x=x_{1} \& z=0$ in equation (2). We get values of y_{1}.
Put $x=x_{1} \& y=y_{1}$ in equation (3). We get values of z_{1}.
For second Iteration - put $y=y_{1} \& z=z_{1}$ in equation (1). We get values of x_{2}. Put $x=$ $x_{2} \& z=z_{1}$ in equation (2). We get values of y_{2}.

Put $x=x_{2} \& y=y_{2}$ in equation (3). We get values of z_{2}

And so on.

Function

Let A and B be two non-empty sets, then a relation
f : A $\quad \mathrm{B}$ is called a function, if every element of set A has unique images in set B .
Function is also called as map or mapping it is expressed as $y=f(x)$,
Where y is dependent variable, x is independent variable.
A set A is known as Domain of f and set B is known as the co-domain of f.
A set of image of elements of A is known as Range of f.
Cøntact us:9372844023/7738376831
Plot No. 46, sector 5
Near MSEB sub station, Kharghar
Navi Mumbai 410210

S^R^SWATI Institute of Technology

Types of Functions:

- Constant Function : $f(x)=C$ where $c=$ constant
- A function which consists only algebraic operations is called as Algebraic Function.
- Rational Function: $f(x)=\frac{P(X)}{Q(X)}, Q(x) \neq 0$ where $P(x), Q(x)$ are polynomials in X.
- Trigonometric Function: functions like $\sin x, \cos x, \tan x$
- Implicit Function : $f(x, y)=0$
- Parametric Function: $x=f(t), y=g(t)$
- Composite function : $y=f[g(x)] \Rightarrow y=f o g(x)$

Odd and Even function:
a) If $f(-x)=-f(x)$, then $f(x)$ is odd function.
b) If $f(-x)=f(x)$, then $f(x)$ is even function.

Inverse Function: if $f: A \rightarrow B$ is one-one, onto then a function $f: B \rightarrow A$ is called inverse function.

$$
\text { If } y=f(x) \Rightarrow x=f^{-1}(y)
$$

Function which are not polynomial, instead they are logarithmic, trigonometric, exponential functions are called Transcended functions.
E.g. 1) $f(x)=\sin x+\cos x$----- Trigonometric function
2) $f(x)=\log x e-----$ Logarithmic function
3) $f(x)=e^{s}+1--\quad$ Exponential Function

S^R^SWATI Institute of Technology

Kharghar, Navi Mumbai - 410210.

$$
\begin{aligned}
& \frac{d}{d s}(k)=0 \quad k \in R \\
& \frac{d}{d s}(x)=1
\end{aligned}
$$

$$
\frac{d}{d s}\left(x^{n}\right)=n x^{n-1}, n \in R
$$

$$
\frac{d}{d s}\left(\frac{k}{s^{n}}\right)=\frac{-k n}{s^{n}+1} \quad, k \in R, K \neq 0
$$

Derivative of sum $\&$ difference of function:-
If $U \& V$ are two differentiable function of x. If $y=u \pm V$ then

Derivative of the product function :-

If $u \& v$ are two differentiable function of x, Ify $=u v$
Then $\frac{d y}{d s}=\frac{d(u v)}{d s}=u \frac{d v}{d s}+v \frac{d u}{d s}$

Derivative of the quotient :

If $u \& v$ are different function of x, If $y=\frac{U}{v}$ then $\frac{d y}{d s}=\frac{v \frac{d u}{d x}-u \frac{d v}{d x}}{v^{2}}$

\square Chain Rule(composite function) :-
If y is a function of $u \& u$ is function of x, then

$$
\frac{d y}{d s}=\frac{d y}{d u} \cdot \frac{d u}{d s}
$$

Derivative of Parametric function :-

APPLIED MATHEMATICS (SEM-III)

Application of Derivative

$\frac{d y}{d s}$ Represents a slope of tangent to the curve $y=f(x)$ at the point $p\left(x y_{1}\right)_{1} O n$ it.
equation of tangent to the curve $y=f(x)$ at $p\left(x_{1}, y_{1}\right)$ is
$y-y_{1}=m\left(x-x_{1}\right), \quad m=\frac{d y}{d s}$
equation of normal to the curve is: $y-y_{1}=\frac{\bar{m}}{m}^{1}\left(x-x_{1}\right), m_{d s}=d y$

Condition of Maxima and minima :

a) A function $y=f(x)$ is maximum at $x=$

$$
\begin{aligned}
\text { a if 1) } f^{u}(x) & =0 \\
\text { 2) } f^{w w}(a) & <0
\end{aligned}
$$

b) A function $y=f(x)$ is minimum at $x=$

S \triangle R^SW^TI Institute of Technology

$$
P(B / A)=\frac{P(\notin \cap B)}{P(F)}, \quad P(B)>0
$$

$\mathrm{P}(\mathrm{A} \cap \mathrm{B})=\mathrm{P}(\mathrm{A}) \cdot \mathrm{P}(\mathrm{B})$ if $\mathrm{A} \& \mathrm{~B}$ are independent event.

- Binomial distribution : $p(x=r)=n_{c} p^{r} q^{n-r}$

Where $\mathrm{P}=$ Probability of success in single trials. $\mathrm{q}=1-\mathrm{P}$
$\mathrm{n}=$ no. of trials
$r=$ no. of success in n-trials

- Poisson's distribution :

Mean : $m=n p$
Variance $(V)=$ mean $=n p$
S.D $=0=\sqrt{ }$ varience

- Normal distribution

If z is standard normal variable then, $\mathbf{Z}=$
Where x is binomial variable
$\mu=$ mean $=n p$
$o=$ standard deviation

S^R^SWATI Institute of Technology

Integration

Definition: - If $\frac{d}{d s}[f(x)]=g(x)$ then $f g(x) d x=f(x)+c$

Contact us:9372844023/7738376831
Plot No. 46, sector 5
Near MSEB sub station, Kharghar
Navi Mumbai 410210

$\boldsymbol{f} \overline{a^{2}-x^{2}}$	x 2$a^{2}-x^{2}+\frac{a^{2}}{2} \sin ^{-1}\binom{x}{a}$

Formulea:

$$
f_{\overline{f(s)}}^{f^{F(x)}} d x=\log |f(x)|+c \quad \quad f_{\frac{f^{f(x)}}{f \overline{f(s)}}} d x=2 f f(x)+c
$$

Integration by parts: $\left.f u . v d x=u f v d x-f_{d s}^{d u} \cdot f v d x\right] d x$.

Substitution to remove the square root in the integration :-

If integral contains
substitute

1) $\sqrt{a^{2}-x^{2}}$
2) $\sqrt{x^{2}-a^{2}}$
3) $\sqrt{a^{2}+x^{2}}$
4) $\sqrt{(a-s)}$
5) $\sqrt{2 a x-x^{2}}$
6) $\overline{\frac{a-s}{a+s}}$
7) $\frac{\overline{a^{2}-s^{2}}}{a^{2}+s^{2}}$
8) $\sqrt{2 a x-x}$

9) ${ }_{a}^{b} f f(x) d x={ }_{a}^{b} f f(t) a t$
10)

3) ${ }_{a}^{b} f f(x) d x={ }_{a}^{c} f f(x) d x+{ }_{c}^{b} f f(x) d x$ $\ldots \mathrm{a}<\mathrm{c}<\mathrm{b}$
4) $f \dagger(x) d x=$

$$
\text { 7) } \begin{aligned}
{ }_{-a}^{a} f(x) d x & =0 \\
& =2 \underset{0}{a} \dagger(x) d x \rightarrow \text { i } \dagger \dagger(x) \text { is even }
\end{aligned}
$$

Applications of definite integration -

Area bounded by the curve $y=f(x)$, x-axis and ordinate
$x=a$ and $x=b$ is, $A={ }_{a}\left|f^{b} y d x\right|$
Area between two curves $y=f(x)$ and $y_{1}=g(x)$ is given by

Differential equation (D.E.)

* An equation involving differential co-efficient is called D.E.
${d s^{2}}^{2}+\left(d_{d s}\right)-y=0$
Order: order of highest derivative in given D.E.
Degree: degree of highest order derivative of D.E.
Note:order ofD.E. is alwayspositiveinteger
To find order and degree make D.E. Free from radicals and Fractions.
* Order of D.E. is equal to the number of arbitrary constants.
* Formation of D.E -

1) Find out number of arbitrary constants of eqn.
2) Trytoeliminateconstants by differentiatingeqn.

* A solution in which number of arbitrary constants is exactly equal to the order of the D.E. is called General solution.
* Variable separable form :-

In this method write given diff eqn in the form
$f(x) d x=f(y) d y \quad$ [i.e. separate variables]
Then by integrating we get sol ${ }^{n}$.

* Homogeneous D.E -. A differential equation in which degree of each term is same is called homogeneous D.E.

* Its solution is obtained by putting $y=v x$ Diff. w.r.t.x.

$$
\therefore \mathrm{dy}=\mathrm{v}+\mathrm{x}^{\mathrm{dv}}
$$

$\overline{d s}$

An eq ${ }^{n}$ of the form $M d x+N d y=0$ is called exact D.E.

where ${ }^{\alpha M}$ ispartialderivative of Mw.r.to.ykeeping x constant itsol ${ }^{\mathrm{n}}$ is given by isMadtral derivative of N w.r.to. x keeping y constant takindxy constant

$$
+f N d y=c
$$

It is the D.E. of the form ${ }^{\text {taking }}+\mathrm{Py}$, $=Q \oint \mathrm{~N}$ free from x (i.e. terms of y only)

Linear Diff eqn
ds
Where P and Q are constants or functions of x and constant .
Its solution is obtained by

$$
y(I . F .)=f Q .(I . F .) d x+c
$$

Where I.F. $=\mathrm{e}^{\mathrm{f} p d s}$
$e^{\text {Sog }_{e} f(s)}=f(x) \quad e^{- \text {Sog }_{e}(s)}=$
It is the eqn of the form ${ }^{d y}+p y==^{f}(Q)(y)^{n}$

* Bernoulli's Diff. eq ${ }^{n}$:-

Where P and Q are constants or functions of x only

S^R^SW^TI Institute of Technology

Contact us:9372844023/7738376831
Plot No. 46, sector 5
Near MSEB sub station, Kharghar
Navi Mumbai 410210

BASIC PHYSICS

(FOR ALL BRANCHES)

ELASTICITY

S.I.UNITS AND FORMULAE (SEM I)

Topic 1: Properties of Solids

Stress	$\mathrm{N} / \mathrm{m}^{2}$	$\mathrm{~F} / \mathrm{A}$
Strain	Unit less	Change in dimension/original dimension
Young's Modulus (Y)	$\mathrm{N} / \mathrm{m}^{2}$	$\mathrm{Y}=\mathrm{FL} / \mathrm{Al}, \mathrm{Y}=\mathrm{mg} / \mathrm{Y}^{2} \mathrm{l}$
Bulk Modulus (K)	$\mathrm{N} / \mathrm{m}^{2}$	$\mathrm{~K}=\mathrm{V} .(\mathrm{dP} / \mathrm{dV})$
Compressibility $(1 / \mathrm{K})$	$1 / \mathrm{N} / \mathrm{m}^{2}$	$1 / \mathrm{K}=\mathrm{N} / \mathrm{V} .(\mathrm{dP} / \mathrm{dV})$
Modulus of Rigidity (η)	$\mathrm{N} / \mathrm{m}^{2}$	$\eta=\mathrm{F} / \mathrm{A} \theta$
Relation of ($\mathrm{Y}, \mathrm{K}, \eta$)	-------	$\mathrm{Y}=9 \mathrm{~K} \eta / 3 \mathrm{~K}+\eta$
Poisson's Ratio (δ)	Unit less	$-\Delta \mathrm{D} . \mathrm{L} / \mathrm{D} . \mathrm{l}$

Topic 2: Properties of Liquids

Pressure (P)	$\mathrm{N} / \mathrm{m}^{2}$	F/A
Velocity gradient (V)	/sec (per second)	dv/dx
Force (F)	newton (N)	Stokes Formula F $=6<\eta \mathrm{r} v$
Area (A)	m^{2}	
Newton's Law of Viscosity OR Viscous Force	newton (N)	$\mathrm{F}=\eta \mathrm{A} .(\mathrm{dv} / \mathrm{dx})$
Coefficient of Viscosity (η)	$\mathrm{NSec} / \mathrm{m}^{2}$	$\eta=2 / 9 r^{2} \mathrm{~g}(\mathrm{~d}-\rho) / \mathrm{v}$
Critical Velocity (Vc)	m / s	$V \mathrm{c}=\mathrm{R} . \eta / \rho . \mathrm{r}$
	$\mathrm{Kg} / \mathrm{m}^{3}$	
	N/m	$\mathrm{T}=\mathrm{rh} \rho \mathrm{g} / 2 \cos \theta$
Acceleration due to gravity (g)	$\mathrm{m} / \mathrm{s}^{2}$	
Angle of contact (θ)	Degree (<)	
Height (h)	m	
Temperature gradient	< c/m	$\theta_{1-} \theta_{2} / \mathrm{d}$
Coefficient of thermal conductivity (K)	$\mathrm{Kcal} / \mathrm{m}<\mathrm{kSec}$ OR Watt/m<k	$\mathrm{K}=\mathrm{Q} \mathrm{~d} / . \mathrm{A} \cdot\left(\theta_{1-}-\theta_{2}\right) \cdot \mathrm{t}$
Temperature (T)	<c	
Pressure (P)	atm.	
Volume (V)	m^{3}	
Joule's Constant (J)	$\mathrm{J} / \mathrm{kcal}$	
Specific heat of gas at constant Pressure (Cp)	$\mathrm{J} / \mathrm{kg}<\mathrm{c}$	
Specific heat of gas at constant Volume (Cv)	$\mathrm{J} / \mathrm{kg}<\mathrm{c}$	
Adiabatic Index(<)	--------	$\mathrm{Cp} / \mathrm{Cv}>1$
Relation between (C,F,T)	$<\mathrm{C},<\mathrm{F},<\mathrm{K}$	$\mathrm{C}=5 / 9(\mathrm{~F}-32), \mathrm{F}=\left(9 / 5^{*} \mathrm{C}\right)+32, \mathrm{~T}=\mathrm{C}+273$
Boyle's Law	-	$\mathrm{P}_{1} \mathrm{~V}_{1}=\mathrm{P}_{2} \mathrm{~V}_{2}$
Charle's Law	------	$\mathrm{V}_{1} / \mathrm{T}_{1}=\mathrm{V}_{2} / \mathrm{T}_{2}$
Gay Lussac's Law	--------	$\mathrm{P}_{1} / \mathrm{T}_{1}=\mathrm{P}_{2} \mathrm{~T}_{2}$
Perfect Gas Equation	---------	$\mathrm{PV}=\mathrm{RT}$
Mayer's Relation	------	$\mathrm{Cp}-\mathrm{Cv}=\mathrm{R} / \mathrm{J}$

Topic 4: Optics

Velocity of light in air or glass (Va \& Vg)	m / s	${ }_{\mathrm{a}} \mu_{\mathrm{g}}=\mathrm{Va} / \mathrm{Vg}$
Velocity of light in air or water (Va \& Vw)	m/s	${ }_{\mathrm{a}} \mu_{\mathrm{g}}=\mathrm{Va} / \mathrm{V}_{\mathrm{w}}$
Time (t)	sec	
Critical Angle ($\theta \mathrm{c}$)	Degree min.sec. $(<, ")$	$\theta c=\sin ^{-1} C$
Numerical Aperture(N.A)	Unit less	$N A=f \overline{\mu 2 \text { core }-\mu 2 \text { clad }}$
Acceptance Angle ($\theta \mathrm{m}$)	Degree (<)	$\theta \mathrm{m}=\sin ^{-1}$ (N.A)
Refractive Index (μ)	Unit less	Snell's Law (μ) =sini/sinr
Prism Formula (μ)		$\mu=\sin (\mathrm{A}+\delta \mathrm{m} / 2) / \sin (\mathrm{A} / 2)$

57| Contact us:
9372844023/7738376831
Plot No. 46, sector 5
Near MSEB sub station, Kharghar

58| Contact us:

59| Contact us:

SへRへSWNTI Institute of Technology
Leaxn Live Achieve and Contxibute
Kharghar. Navi Murnbai - 410210.

S .I.UNITS AND FORMULAE (SEM II) MECHANICAL

Topic 1.1: Rectilinear Motion \& Angular Motion

Distance	meter	
Velocity	meter/second	$\mathrm{V}=\mathrm{S} / \mathrm{t}$
Acceleration	$\mathrm{m} / \mathrm{s}^{2}$	$\mathrm{a}=\mathrm{v}-\mathrm{u} / \mathrm{t}$
Time	Second	
Displacement	Meter	$\mathrm{S}=\mathrm{V}^{*} \mathrm{t}$
Kinematical Equation		$\mathrm{V}=\mathrm{u}+\mathrm{at}, \mathrm{S}=\mathrm{ut}+1 / 2 \mathrm{at}{ }^{2}, \mathrm{v}^{2}=\mathrm{u}^{2}+2 \mathrm{as}$
Motion Under Gravity		$\mathrm{V}=\mathrm{u}+\mathrm{gt}, \mathrm{S}=\mathrm{ut}+1 / 2 \mathrm{gt}{ }^{2}, \mathrm{v}^{2}=\mathrm{u}^{2}+2 \mathrm{gs}$
Motion Under Gravity		$\mathrm{V}=\mathrm{u}-\mathrm{gt}, \mathrm{S}=\mathrm{ut}-1 / 2 \mathrm{gt}^{2}, \mathrm{v}^{2}=\mathrm{u}^{2}-2 \mathrm{gs}$
		$\mathrm{S}^{\mathrm{nth}}=\mathrm{a} / 2(2 \mathrm{n}-1)$
Angular Displacement	radian	
Angular Velocity	radian/second	-
Angular Acceleration	radian/second ${ }^{2}$	
Angular Equation		$\omega_{\mathrm{F}}=\omega_{\mathrm{I}}+\alpha \mathrm{t}, \theta=\omega_{\mathrm{It}+1 / 2 a \mathrm{t}^{2}, \omega^{2} \mathrm{~F}=\omega^{2} \mathrm{I}+2 \alpha \theta}$
		$\theta^{\text {nth }}=\alpha / 2(2 n-1)$

Topic 4.2: X- Rays

Minimum Wavelength

Meter	$\lambda_{\min }=12400 / \mathrm{V}$

60| Contact us:
9372844023/7738376831
Plot No. 46, sector 5
Near MSEB sub station, Kharghar

61 Contact us:

SへRへSWNTI Institute of Technology
Leaxn Live Achieve and Contxibute
Kharghar．Navi Murmbai－ 410210.

S ．I．UNITS AND FORMULAE（SEM II）CIVL

Topic 1．1：Rectilinear Motion \＆Angular Motion

Topic 4．1：Photo electricity

Energy of Photon	Joule	$\mathrm{E}=\mathrm{h}_{<}$
Velocity of Light	m / s	$\mathrm{C}=<\lambda$
Threshold Wavelength	Meter	$\lambda 0=\mathrm{h} \mathrm{c} / \mathrm{w}_{0}$
Maximum Kinetic Energy	Joule	$\mathrm{K} . \mathrm{E}_{\mathrm{Max}}=\mathrm{h}(<-<0)$
Work Function	Joule second	$\mathrm{w}_{0}=\mathrm{h}<0$

62｜Contact us：
9372844023／7738376831
Plot No．46，sector 5
Near MSEB sub station，Kharghar

63| Contact us:

Topic 4．2：X－Rays

Minimum Wavelength	Meter	$\lambda_{\text {min }}=12400 / \mathrm{V}$

S ．I．UNITS AND FORMULAE（SEM II）EJ／IF／CO

1．Basic Electric circuit．

64｜Contact us：

65 Contact us:
9372844023/7738376831
Plot No. 46, sector 5
Near MSEB sub station, Kharghar

66| Contact us:

SEM－I BASIC CHEMISTRY

（ALL BRANCHES）

50 MARKS
 IMPORTANT FORMULAE

TOPIC－1 CHEMICAL BONDING

1．Atomic Number $=$ No．of Protons $=$ No．of Electrons．

$$
\mathrm{Z}=\mathrm{p}=\mathrm{e}
$$

2．Atomic Mass Number $=$ No．of Protons + No．of Neutrons

$$
A=p+N
$$

3．No．of Neutrons，

$\mathrm{N}=\mathrm{A}-\mathrm{Z}$

TOPIC－2 ELECTROCHEMISTRY

1． $\mathrm{W}=\mathrm{ZQ}$ or $\mathrm{W}=\mathrm{ZCt}$
2．Wt．of substance A deposited $=\underline{C} . E($ eq．wt $)$ of substance A

Wt．of substance B deposited C．E（eq．wt）of substance B
3．$C \cdot E(e q \cdot w t)=Z(E C E) \times 96500$
4． Eq． $\mathrm{wt}=$ Atomic weight
Valency
5．Eq．wt of base $=$ Molecular wt．of base
Acidity of Base
6．Eq．wt of acid＝Molecular wt．of acid
Basicity of acid
7． $\mathrm{pH}=-\log _{10}\left[\mathrm{H}^{+}\right]$
8． $\mathrm{pOH}=-\log _{10}\left[\mathrm{OH}^{-}\right]$

WINTER - 2018 EXAMINATION

Subject Name: English

Model Answer
Subject Code:

Important Instructions to examiners:

1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
3) The language errors such as grammatical, spelling errors should not be given more importance. (Not applicable for subject English and Communication Skills.)
4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
6) In case of some questions, credit may be given by judgment on part of examiner of relevant answer based on candidate's understanding.
7) For programming language papers, credit may be given to any other program based on equivalent concept.

| Q.
 No. | Sub
 Q. N. | Answer | Marking
 Scheme |
| :---: | :---: | :--- | :---: | :---: |
| $\mathbf{1 .}$ | (a) | Attempt any five of the following:
 State the views of JRD Tata about a leader.
 Ans. According to JRD Tata, leadership meant motivating others. So
 leader should motivate others. To be a leader, one has to get to lead
 human beings with affection. The leader should identify talent easily.
 And once he/she is confident that a manager would perform, he/she
 should give the manager a long hope. | $\mathbf{0 2}$ |
| | (b) | Describe the role of Mr | |

69

Contact us:
Describe the role of Mr. Lal as a doer in the organization.
Ans. When Lal started the organization, he was a 'doer' in the organization. He used to 'do' everything including a coding, system
architecture, accounting, administration, back office or business
development. He was solely responsible for these activities. The 'doer'
phase helped him to sustain, as he had to curtail costs. It also helped him to know all the nuances of the business. As he said without Doer stage, he would've never understood higher management thoughts.
(c) Describe the family condition of Shiva Kumar during his childhood and school life.
Ans. The family condition of Shiva Kumar during his childhood and school life was not financially well off. His father was an out-of-work lorry driver who did not have Rs. 15,000 to pay Shiva's annual fees. Shiva's mother sold her jewellery for his admission in Maruthi Vidyalaya, an ICSE School. Shiva and his elder sister Yogeshwari used to sell the garlands at traffic signals and other places after their school. Shiva used to sell the newspapers. Despite all this hard work, money was

$\begin{array}{\|l\|} \hline \text { Q. } \\ \text { No. } \\ \hline \end{array}$	$\begin{aligned} & \text { Sub } \\ & \text { Q. N. } \end{aligned}$	Answer	Marking Scheme
2.		road. His father took him to the nearby hospital. There was urgency in the voice of the nurse sent by the doctor to call him. He felt a surge of anxiety as he entered the doctor's cabin. The doctor told his father that Anish's brain had been severely injured and he would collapse in a couple of hours. However, he was not ready to accept that. So he shifted Anish immediately to a leading hospital. The neurosurgeon there, examined him and decided to go for a surgery. Alone he was waiting outside the operation theatre at 2.30 am , weeping continuously. Wild thoughts like "In what state is he going to be after the surgery? Is he going to be alive? Is he going to be normal? Will he ever speak again? Is he going to walk, or will he have to use the wheelchair?" ran in his mind. After the surgery, the doctor told him that in a scale of 1 to 15 , where a normal person would be rated 15 , Anish could be rated only three. He was then shifted to a special room with 24 -hour special nurses to take care of him. Tubes were inserted into his body to aid breathing, feeding and urination. The right side of his skull was cut open and kept in his abdomen for future use. The only movements in his body were that of his head, which moved right and left and his eye balls. He was thinking why that plight had befallen his son.	04
	(c)	Summarize the contribution of JRD Tata as a philanthropist. Ans: JRD Tata was a philanthropist who wanted India to be a happy country and did all he could to make it so. He was also a man of great sensitivity and was pained by the poverty he saw around him and wanted strongly to alleviate it. He was a patron of the sciences and the arts. As a patron of the arts, JRD was revered by India's artists, sculptors and performing artist. Under JRD's tutelage, the Tatas became the biggest buyers, promoters and supporters of the art world in India. As a philanthropist, JRD Tata built up the tremendously active Tata Charitable Trust and kept it alive. Entrepreneurs like Sir Homi Mody, Sir Ardeshir Dalal, Sir Jehangir Ghandy, Russi Mody, Sumant Moolgaokar and Darbari Seth, etc. were developed under JRD Tata's supportive climate. Scientists of international repute such as Homi Bhabha, leading lawyers such as I. D. Choksi and Nani Palkhivala and economists such as John Matthai, A. D. Shroff, D. R. Pendse and Freddie Mehta could flourish under JRD Tata's guidance.	04
	(d)	Justify the statement 'He (Gurmeet Singh) is like God'. Ans: Gurmeet Singh is a true Samaritan. Someone among the abandoned patients says, 'He is like God'. This statement proves itself when we learn about Gurmeet Singh's contribution as a philanthropist. Gurmeet Singh, once visited the Government hospital ward with poor lady and her scalded son, he was moved by the scene there. At that moment, he decided to do something for the patients of the ward. He then started providing these abandoned patients with food and medicines. He also	

		SARへSWへTI Education Society＇s SへRへSWへTI Institute of Technology Leaxn Live Achieve and Contxibute Kharghar．Navi Murnbai－ 410210.	
No．	Q．N．		Scheme
2.		paid for their expensive tests，scan and even chemotherapy for cancer patients．He and his brothers put away 10 percent of their monthly earnings in donation box only for the abandoned patients．Gurmeet Singh＇s entry in the ward always brings a smile on the weary faces of the patients．He plays different roles for them．He enquires about their health as if he is their doctor；Being careful for them，he plays the role of the nurse；As he provides them with necessary food and medicines，he is their provider，and most importantly，he plays the role of a kin for them by affectionately taking their care．He is regular in his help and after his work，he leaves his modest apartment everyday for the patients．He had not gone on vacation for 13 years for them．	04
3.	（a）	Attempt any three of the following： Develop a dialogue between librarian and student about losing the borrowed book．（8－10 dialogues） Ans： Student ：Good morning Sir！ Librarian ：Good morning！How can I help you？ Student ：Sir，I have lost a book of the library that was issued to me last week． Librarian ：（Asks name and checks the issue record）．You were issued two books last week．Which book did you lose？ Student－＇Business Communication．＇ Librarian：Oh！This was actually an old copy we had．It is not easily available in the market．You should have been careful about this． Student ：I am extremely sorry for this．Please guide me，what I should do now？ Librarian ：You have to purchase the same book from market and submit it here．In case the book is not available，you have to pay the fine． Student ：Sir，I will try my best toget the copy of the book．What would be the deadline to submit the new copy？ Librarian ：You can submit it till next Friday． Student ：All right Sir．Thank you． （Note：Contents may vary．）	（12）
	b）	Develop a dialogue between two friends regarding importance of reading．（8－10 dialogues） Ans： Sam ：Hi Sunil！ Sunil ：Hello Sam！ Sam ：What are you reading？ Sunil ：This is one of the famous historical novel in Marathi． Sam ：Is it related to kings，emperors and all？ Sunil ：Yes it is．We get to know about the history，the kind of life people the difficulties they faced that time etc．	ed then，

3.

$\begin{aligned} & \hline \mathrm{Q} . \\ & \text { No. } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { Sub } \\ & \text { Q. N. } \end{aligned}$	Answer	Marking Scheme
		Sam ：I would also like to read such books．You know even I am fond of reading． Sunil ：Yes，you can take my copy as I finish reading．Along with fiction，reading non－fiction is also beneficial to gain knowledge and information． Sam ：Yes，you are right．Reading magazines that are published for specific and general purposes helps us a lot in our professional and social life． Sunil ：Right！Even reading newspaper daily keeps us updated about what is happening around． Sam ：True！Inspirational and motivational reading also helps us keeping our emotional balance． Sunil ：Very true！Reading itself is a huge source of acquiring knowledge． Sam ：Exactly！Reading is important not only for students but for each and every person to understand the life in its true sense． Well，I will take your leave now．Bye！ Sunil ：So keep reading．Bye！ （Note：Contents may vary．）	04
		Write a paragraph on＇A Visit to a Historical Place＇．（75 words）Ans： What a historical visit it was！Last Monday，I visited Shaniwarwada which is located at Bajirao Road in Pune．I saw beautiful walls．I was astonished when I saw well designed Delhi Darwaja which is the main gate of Shaniwarwada．I entered Shaniwarwada with the curiosity of what I will get to observe inside．I came to know that Shaniwarwada was originally the seven－storied capital building of the Peshwas of the Maratha Empire．Then I saw beautiful Mahal where Peshwas used to conduct meetings I also saw Khidki Darwaja，Mastani Darwaja， Narayan Darwaja and Ganesh Darwaja．Really it was a nice experience． （Note：Contents may vary．）	04
	（d）	Write a paragraph on＇Technical specifications of a Mobile Phone＇． （75 words） Ans：Mobile phone is an electronic device which is used for tele－ communication．It is also used for entertainment like listening to songs， watching videos，internet and other related activities．A mobile phone is made up of different components like CPU，battery，an input mechanism like keypad for feature phones and touch screens for most smartphones， display，speakers，SIM cards and R－UIM cards．A CPU is the processor	
74 Contact us： 9372844023／7738376831 Plot No．46，sector 5			
Near MSEB sub station，Kharghar			

of phones．A battery provides the power source for the phone functions． An input mechanism，like keypad for feature phones and touch screens for most smartphones，allows the user to interact with the phone．
A display shows the user＇s typing，text messages，contacts，and more． 04 （Note： Contents may vary．）

Kharghar．Navi Murnbai－ 410210 ．

78| Contact us:

Q． No．	Sub Q．N．	Answer	Marking Scheme
5．	（ii）Draft a speech for farewell function of Mr．Pawar，Manager of Production Department of Apex Company，Mumbai，who is retiring this month end． Ans：Good afternoon ladies and gentleman！ Today we have gathered here for bidding farewell to Mr．Pawar， Manager of Production Department of our Apex Company，Mumbai．He has put in total 19 years of service as a worker and 05 years as a manager in the Production department of our company．He has worked with enthusiasm and devotion and contributed positively for the development of the Production department and our company as well．He shared a good rapport with workers． He will retire this month end after putting 24 years of dedicated		

\begin{tabular}{|c|c|c|c|}
\hline $$
\begin{aligned}
& \hline \text { Q. } \\
& \text { No. } \\
& \hline
\end{aligned}
$$ \& $$
\begin{array}{|l}
\hline \text { Sub } \\
\text { Q. N. }
\end{array}
$$ \& Answer \& Marking Scheme

\hline 6. \& (a)
(i)

(ii)

(iii) \& | Attempt any two of the following: |
| :--- |
| Do as directed: |
| An vice chancellor has agreed to promote hint to the post of an reader. (Rewrite the sentence using the correct articles in place of the underlined articles.) |
| Ans: The vice chancellor has agreed to promote hint to the post of $\underline{\mathbf{a}}$ reader. |
| Ashok believes that he will get success when he works hard. He will definitely get the job unless he deserves it. (Rewrite the sentence using the correct conjunctions in place of the underlined conjunctions.) |
| Ans: Ashok believes that he will get success if he works hard. He will definitely get the job if/because he deserves it. |
| The new trainees are generally seen practising on the river bank. They are not allowed to go at a certain point. (Rewrite the sentence using the correct prepositions in place of the underlined prepositions.) |
| Ans: The new trainees are generally seen practising at the river bank They are not allowed to go beyond a certain point. | \& (12)

02

02
02

\hline \& (B) \& | Read the following passage and answer the given questions: We left Dehradun early in the learning and stopped by for breakfast at Mussouri. From Mussouri the picturesque road heads north to Yamuna bridge, then to Barkot, where one road branches to Gangotri. The road winds along the Yamuna river through luxurious dense green vegetation to Hanumanchatti, the end of motorable road. The remaining journey has to be undertaken on foot or pony. Yamunotri is only 13 km from Hanumanchatti. But it is better to proceed another 6 km and have the night halt at Janakibaichatti. The journey to Yamunotri is simply breathtaking. High snowcovered peaks all around, glaciers, streams and waterfalls, vibrant green foliage and the pristine air are a sheer delight to tired city lungs. Yamunotri, 3322 metres above sea level, is located on the western bank of the great peak of Banderpunch (monkey's tail) which is 6315 metres high. |
| :--- |
| Questions: |
| State the reason of taking halt at Mussouri. |
| Ans: The reason of taking halt at Mussouri was taking breakfast there. | \& 01

\hline \& (ii) \& | Mention the reason to undertake remaining journey to Yamunotri on foot or pony. |
| :--- |
| Ans: The road that winds along the Yamuna river through dense green vegetation to Hanumanchatti was the end of motorable road. This is the reason for undertaking remaining journey to Yamunotri on foot or pony. | \& 01

\hline
\end{tabular}

Q. No.	Sub Q. N.	Answer	Marking Scheme
$\mathbf{6 .}$	iii)	Explain why the journey to Yamunotri is simply breathtaking. Ans: High snowcovered peaks all around, glaciers, streams and waterfalls, vibrant green foliage and the pristine air are a sheer delight to tired city lungs. So the journey to Yamunotri is simply breathtaking.	$\mathbf{0 2}$
iv)	Describe the location of Yamunotri. Ans: Yamunotri is13 km from Hanumanchatti. It is 3322 metres above sea level and located on the western bank of the great peak of Banderpunch (monkey's tail) which is 6315 metres high.	$\mathbf{0 2}$	
(C) (i)	Do as directed: Mary (watch) Television now as she (complete) her work. (Rewrite the sentence using the correct form of the verbs given in the brackets) Ans: Mary is watching Television now as she has completed her work.	$\mathbf{0 2}$	
(ii)	Don't pluck flowers. (Change into Assertive) Ans: You are ordered not to pluck flowers.	$\mathbf{0 2}$	
(iii)	It is a very beautiful city. (Change into Exclamatory) Ans: What a beautiful city it is!		

S^R^SW^TI Institute of Technology

SUMMER- 2019 EXAMINATION

Subject Name: English

Model Answer

Important Instructions to examiners:

1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
3) The language errors such as grammatical, spelling errors should not be given more importance. (Not applicable for subject English and Communication Skills.)
4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
6) In case of some questions, credit may be given by judgment on part of examiner of relevant answer based on candidate's understanding.
7) For programming language papers, credit may be given to any other program based on

Contact us:9372844023/7738376831
Plot No. 46, sector 5
Near MSEB sub station, Kharghar
Navi Mumbai 410210

Contact us:9372844023/7738376831
Plot No. 46, sector 5
Near MSEB sub station, Kharghar
Navi Mumbai 410210

Kharghar, Navi Mumbai - 410210.

$\begin{aligned} & \text { Q. } \\ & \text { No. } \end{aligned}$	$\begin{aligned} & \text { Sub } \\ & \text { Q. N. } \end{aligned}$	Answer	Marking Scheme
1.	(c)	Name the scientists and lawyers who flourished under the leadership of JRD Tata. Ans: The scientists of international repute such as Homi Bhabha and leading lawyers such as J. D. Choksi and Nani Palkhivala flourished under JRD Tata's environment.	02
	(d)	State any three adjectives to describe the condition of patients in the abandoned ward in Patna. Ans: The adjectives to describe the condition of patients in the abandoned ward in Patna are as below: 1. Abandoned 2. Lawaris 3. Sick 4. Underprivileged (Note: Any three correct adjectives should be given marks.)	02
	(e)	State any three health hazards of improper disposal of e-waste. Ans : Health hazards of improper disposal of e-waste are as follows: 1. Due to improper disposal of e-waste, hazardous chemicals like lead, cadmium, beryllium, mercury and brominated flame retardants pollute the air at a high risk. 2. It contaminates soil and leaching into water sources. 3. If e-waste goes in landfill water, it introduces lethal toxicity which causes health risks range from kidney disease and brain damage to genetic mutations. (Note: Any other three correct points should be given marks.)	02
	(f)	Express in two sentences about the importance of scoring marks for your career. Ans: Scoring good marks is a pedestal for the career and our future growth. It helps in getting thorough knowledge which is necessary to get admission in a good and reputed institute and getting the job as well. (Note: Contents may vary.)	02

(g)	Name the peaks climbed by Arunima Sinha.	
	Ans. $:$ Arunima Sinha climbed following peaks:	$1 / 2$
	1. Mount Everest in Asia	$1 / 2$
	2. Mount Kilimanjaro in Africa	$1 / 2$
	3. Mount Elbrus in Europe	$1 / 2$
	4. Mount Kosciuszko in Australia	$1 / 2$
	5. Mount Aconcagua in South America	$1 / 2$
	6. Mount Carstensz	

Kharghar, Navi Mumbai - 410210.

$\begin{aligned} & \mathrm{Q} . \\ & \text { No. } \end{aligned}$	$\begin{aligned} & \hline \text { Sub } \\ & \text { Q. N. } \end{aligned}$	Answer	Marking Scheme
2.	(a)	Attempt any THREE of the following : Describe the change in the author's life after his son's accident. Ans: The author's life changed tremendously after his son's accident. The accident was so grave that the sight, that the author saw, is still vivid in his memories. After hospitalization, he felt a surge of anxiety as he entered the doctor's cabin. He was not in a frame of mind to accept when the doctor revealed that Anish's brain had been severely injured, and that in a couple of hours, he would collapse. He wanted Anish back to life. So he shifted Anish immediately to a leading hospital. The neurosurgeon there examined him and decided to go for a surgery. Alone he was waiting outside the operation theatre at 2.30 am and weeping continuously. Many wild thoughts like "In what state is he going to be after the surgery? Is he going to be alive? Is he going to be normal? Will he ever speak again? Is he going to walk, or will he have to use the wheelchair? ran in his minds. That night was so dreadful for him and his family that the memory still shudders his whole being and words fail to express his grief. He was thinking that why this plight has befallen his son. When Anish was back home after months of hospitalisation, his condition was unchanged. He used to cry within himself. They tried all kinds of treatment techniques, but nothing actually bettered his condition. His painful life had come to an end. For the author, it was a huge loss. They could only stand by helplessly as their dear son departed them forever.	(12)
	(b)	State the four qualities of Mr. Lal that have inspired you Ans. : Qualities of Mr. Lal that have inspired me are as follow: 1. Basic Knowledge and Skills - Mr. Lal was a doer. He used to do everything including coding, system architecture, accounting, administration, back office or business development. 2. Excellent Manager - Lal was an excellent manager where he used to manage people. For him, managing people meant teaching them work with balancing their egos. As a manger, he transited himself from a doer to a delegator. Effective Leader - Lal became an effective leader because he was a good doer and a popular manager. Every manager reported to him. He leaded the managers and inspired them to reach the goal of the organization 4. Brilliant Professional - Lal was very talented person. He could	01 01 01

Leaxn Live Achieve and Contribute
Kharghar, Navi Mumbai - 410210.

	understand the entire issue in a minute to a major technical glitch and gave simple and short instructions. (Note: Any other four correct qualities should be given marks.)	01

Contact us:9372844023/7738376831
Plot No. 46, sector 5
Near MSEB sub station, Kharghar
Navi Mumbai 410210

S^R^SWへTI Institute of Technology

Kharghar, Navi Mumbai - 410210.

S^R^SWへTI Institute of Technology

Kharghar, Navi Mumbai - 410210.
$\left.\begin{array}{|c|c|c|}\hline \text { (d) } & \begin{array}{l}\text { Summarise the struggle of Shiva. } \\ \text { Ans: Shiva with his elder sister Yogeshwari used to sell the garlands } \\ \text { at traffic signals and other places after their school. Despite all the hard } \\ \text { work his family members did, money was insufficient. Therefore Shiva } \\ \text { used to sell the newspapers. } \\ \text { Though Krishna paid Shiva's school fees, Shiva's family }\end{array} \\ \text { needed cash for rent and food among other things. So he continued } \\ \text { working and studying hard. After his schooling, he got admission in } \\ \text { Computer Science Engineering. He studied hard and scored good marks. } \\ \text { Then he gave up their flower work. Now, after classes, Shiva began } \\ \text { working late into the night as a salesman in an electronics shop. At one } \\ \text { point, Shiva left his job at the electronics store and started a computer } \\ \text { repair service with a friend. With all this, Shiva sometimes reported late } \\ \text { for college. Being tired, he would take a nap in the class. Classmates } \\ \text { giggled and teachers rebuked him. } \\ \text { Meanwhile, from newspaper delivery boy in the }\end{array}\right\}$

Learn Live Achieve and Contribute
Kharghar, Navi Mumbai - 410210.

\begin{tabular}{|c|c|c|c|}
\hline \[
\begin{array}{|l|}
\hline \text { Q. } \\
\text { No. } \\
\hline
\end{array}
\] \& \[
\begin{array}{|l}
\hline \text { Sub } \\
\text { Q. N. }
\end{array}
\] \& Answer \& Marking Scheme \\
\hline 3. \& (a) \& \begin{tabular}{l}
Attempt any THREE of the following : \\
Develop a dialogue between a teacher and student who is apologising for using mobile phone in the class. (8-10 dialogues). \\
Ans: \\
Teacher : Sumeet! What are you doing? \\
Sumeet : Nothing sir. \\
Teacher : Then what is there in your hands? \\
Sumeet : Sorry sir, I was just checking the message on my phone. \\
Teacher: This is too much. You should not use mobile phone in the classroom. \\
Sumeet : I apologise sir. I will not use the mobile phone in the class henceforth. \\
Teacher : Technology should be used for our benefit but it should not overtake us. We should not misuse it. \\
Sumeet : Sorry sir. I will take care of it. \\
Teacher : Okay. Now pay attention to the study. \\
Sumeet: Okay sir. \\
(Note: Contents may vary.)
\end{tabular} \& (12)

04

\hline \& b) \& | Develop a dialogue between Arjun and Amit discussing about the ways to improve their spoken English. (8-10 dialogues) |
| :--- |
| Ans: |
| Arjun: Hi Amit, How are you? |
| Amit : I am great. What about you? |
| Arjun : I am fine. What are you doing? |
| Amit : I am reading article on the ways to improve spoken English. |
| It is interesting. |
| Arjun : That's good! Apart from reading articles, listening can also help in improving spoken English. |
| Amit: Yes. It helped me also. Communicating in English also helps me to improve my spoken English. |
| Arjun: Yes. I too use the same method to improve my spoken English. |
| Amit : That's great. See you later. I have a class now. |
| Arjun : Bye. See you. |
| (Note: Contents may vary.) | \& 04

\hline
\end{tabular}

SARASW^TI Institute of Technology

Kharghar, Navi Mumbai - 410210.

(c)	Write a paragraph on "an online class compared to a traditional face-to face class". (75 words) Ans: There are two types of classes - Traditional face-to-face class and Online class. If we compare both, the traditional classes are better than online classes in many ways. First, in the traditional classes, a personal attention can be given to the particular student whereas it is not possible in online classes because learner has to learn by himself/herself. Learning in a class with same age group is fun and interesting thing for the students. It is also helpful in memorizing which is possible only in a	

Leaxn Live Achieve and Contribute
Kharghar, Navi Mumbai - 410210.

$\begin{array}{\|l\|} \hline \text { Q. } \\ \text { No. } \\ \hline \end{array}$	$\begin{aligned} & \hline \text { Sub } \\ & \text { Q. N. } \end{aligned}$	Answer	Marking Scheme
3.		traditional class. Whereas there are no such types of interactive groups in online classes. This can lead to monotonousness. In online classes, computer or mobile may affect our eye sight but there is no such harm in traditional classes. In traditional classes, moral values are taught whereas in online classes, the importance is given only to curriculum. In traditional class, every doubt of a child can be cleared whereas it is not possible in online classes. Traditional classes can clear the concept of a child in a manner which he/she understands but for online classes, the content is fixed and cannot be changed according to the learners' ability. (Note: Contents may vary.)	04
	(d)	Write a paragraph on "Wi-Fi Technology". (75 words) Ans: Wi-Fi is a technology that uses radio waves to provide network connectivity. It stands for wireless frequency. It commonly uses the 2.4 gigahertz UHF and 5 gigahertz SHF ISM radio bands. With the help of Wi-Fi, we can have a very fast access to internet which can be used for service like checking an email, downloading as well as watching songs and movies, checking updates etc. Wi-Fi service is provided free of cost by governments at some places like the railway stations or bus stations. In order to connect to a Wi-Fi, a device has to be equipped with a wireless interface connection. Its range depends on Wi-Fi router. Wi-Fi can be used in Mobile phones, laptops, personal computer, tablets, smart TVs, gaming consoles etc. (Note: Contents may vary.)	-
4.	(a) (i) (ii) (iii) (iv)	Attempt any THREE of the following : Make sentences using the following collocation: Do your best Ans: My coach told me to do my best in the next competitions. Break a record Ans: Virat will break a record of fastest century in ODI cricket. Take an exam Ans: Why don't you take an exam? Save electricity Ans: It is our moral duty to save electricity. (Note: Sentences may vary.)	(12) 01 01 01 01
	(b) (i)	Replace the underlined words with correct word and rewrite the sentences. Amit's father is very industrial. Ans: Amit's father is very industrious.	01

Contact us:9372844023/7738376831
Plot No. 46, sector 5
Near MSEB sub station, Kharghar
Navi Mumbai 410210

S^R^SW^TI Institute of Technology

Kharghar, Navi Mumbai - 410210.

| (ii) | A hoard of dacoits looted the village.
 Ans: A $\underline{\text { herd }}$ of dacoits looted the village. | $\mathbf{0 1}$ |
| :--- | :--- | :--- | :--- |

Leaxn Live Achieve and Contribute
Kharghar, Navi Mumbai - 410210.

$\begin{aligned} & \text { Q. } \\ & \text { No. } \end{aligned}$	$\begin{aligned} & \hline \text { Sub } \\ & \text { Q. N. } \end{aligned}$	Answer	Marking Scheme
4.	(iii) (iv)	The goods train is stationery. Ans: The goods train is stationary. Raju is very week. Ans: Raju is very weak.	$\begin{aligned} & 01 \\ & 01 \end{aligned}$
	(c) (i) (ii)	Write the meanings of the following idioms and m your own: Blessing in disguise Ans: Meaning: something good which is not identif Example: He was not happy with the offer but blessing in disguise. Crocodile tears Ans: Meaning: tears or expressions of sorrow those Example : She shed crocodile tears over her re (Note: Examples may vary.)	$\begin{aligned} & 01 \\ & 01 \\ & 01 \\ & 01 \end{aligned}$
	(d) (i) (ii) (iii) (iv)	Choose the correctly spelt word from the followin unique, unic, unque Ans: unique counsellor, counselar, counselor Ans: counselor angrily, angryly, angrilly Ans: angrily Keys, Keyes, Keies Ans: Keys	01 01 01 01
	(e) (i) (ii)	Change the voice : Let the window be shut. Ans: Shut the window. He will be forgiven by the teacher. Ans: The teacher will forgive him.	01 01
	(iii) (iv)	Will your brother pay your fees today? Ans: Will your fees be paid by your brother today? The robber has been caught by the police.	01

Kharghar, Navi Mumbai - 410210.

	Ans: The police have caught the robbers.	$\mathbf{0 1}$

Q． No．	Sub Q．N．	Answer	Marking Scheme
5．	（A） （a）	Attempt any TWO of the following ： Draft a welcome speech for Dr．Khare，an industrialist from your region who is invited at your institute for a talk on＇＂Expectations of the industry from the diploma holders＂． Ans： Good morning ladies and gentlemen．Welcome to the seminar on ＇＇Expectations of the industry from the diploma holders＇．I take this opportunity to welcome Dr．Khare，CEO，RSK Industries Ltd．，Pune for this talk today．He has won many national and international awards for running his industry effectively．He was conferred＇The Best Industrialist Award＇of the year 2018 by Association of Industrialist， Pune．The Government of India has awarded him with the＇Emerging Entrepreneur Award＇．He has an expertise in delivering lectures on ＇Aspects of Modern Industry＇． It is an honour and a privilege for us Sir to have you with us	
today．I also welcome the dignitaries on and off the dais and my dear friends．Today we haye gathered here for the talk on＇＂Expectations of the industry from the diploma holders＇．Once again I welcome all of you for the seminar．Hope you have a great time．Now I request Dr．Khare to take over the proceedings．Thank you． （Note：Contents may vary．）	04		
（b）	Draft a speech to introduce the chief guest for the first year induction program organised by the institute． Ans： Good Morning one and all present here！		

\begin{tabular}{|c|c|c|c|}
\hline \[
\begin{aligned}
\& \text { Q. } \\
\& \text { No. }
\end{aligned}
\] \& \[
\begin{aligned}
\& \hline \text { Sub } \\
\& \text { Q. N. }
\end{aligned}
\] \& Answer \& Marking Scheme \\
\hline 5 \& \& \begin{tabular}{l}
supported us for the success of this gathering．I thank the chief guest Mr．S．D．Thakur from the bottom of my heart for taking out some time for us and gracing the event by his presence．I express my heartfelt thanks to all the teachers who inspired us during this Annual Gathering．I thank all the organisers，event coordinators，technicians and my colleagues；without their support the event would not have been successful．I also want to thank our mess incharge for providing us the tasty food and tea．Last but not the least，I thank all the participants and students who have joined us today．Thank you all． \\
（Note：Contents may vary．）
\end{tabular} \& 04 \\
\hline \& （B）
（a）
（b）
（c） \& \begin{tabular}{l}
Attempt any TWO ： \\
Change into indirect speech： \\
The monitor said，＂Sir，some students were making noise yesterday＂． \\
Ans：The monitor told sir／the teacher that some students had been making noise the preyious day／the day before． \\
The Prime Minister said．＇India became independent in 1947＂． \\
Ans：The Prime Minister said that India became independent in 1947. \\
＂Sit down．＂She told him． \\
Ans：She told him to sit down．
\end{tabular} \& \begin{tabular}{l}
（04） \\
02 \\
02 \\
02
\end{tabular} \\
\hline 6. \& \begin{tabular}{l}
（a） \\
（i） \\
（ii） \\
（iii）
\end{tabular} \& \begin{tabular}{l}
Attempt any TWO of the following： \\
Do as directed ： \\
Not everyone gets the opportunity to become an famous person． \\
（Rewrite the sentence using correct article in place of the underlined article．） \\
Ans：Not everyone gets an opportunity to become a famous person． \\
Either the police officers or the military personnel were present there（Rewrite the sentence using correct conjunctions in place of underlined conjunction）． \\
Ans：\(\underline{\text { Neither }}\) the police officers nor the military personnel were present there． \\
OR \\
Not only the police officers but also the military personnel were present there． \\
Mr．Verma received a parcel to his son who had been staying in Mysore from many years．（Rewrite the sentence using the correct prepositions in place of underlined preposition．） \\
Ans：Mr．Verma received a parcel from his son who had been staying in
\end{tabular} \& （12）

02

02

\hline
\end{tabular}

	Mysore for many years．	$\mathbf{0 2}$

$\begin{aligned} & \text { Q. } \\ & \text { No. } \end{aligned}$	$\begin{aligned} & \text { Sub } \\ & \text { Q. N. } \end{aligned}$	Answer	Marking Scheme
6.	b)	Read the following passage and answer the given questions : Our forests are important source of natural wealth covering one fifth of the country's land area. They supply the timber for the railways, house building and furniture making. They also supply the fuel for cooking and bamboo for paper making. Medicinal herbs also come from the forests. In the olden days our wise men and philosophers had their "Ashrams' in the forests. These Ashrams were centers of knowledge and learning. Unfortunately forests were ruthlessly cut down in the past few years. While the forests are disappearing the demand for timber is growing. We must therefore protect and develop our forests. "Vana Mahotsava" is a most important step in this direction. It is obseryed for a week in July every year. During this week lakhs of saplings are planted throughout the country. This is being done to restore our fast disappearing forests. Questions : What do forests supply for paper making? Ans: Forests supply bamboo for paper making.	
	(ii)	What was the purpose of Ashrams? Ans: The purpose of Ashrams was to provide knowledge and learning.	
	(iii)	Why is Vana Mahotsava observed? How is it observed? Ans: Vana Mahotsava is observed in order to protect, develop and restore our fast disappearing forests. Vana Mahotsava is observed for a week in July, when lakhs of saplings are planted throughout the country.	02
	(iv)	What would you do to restore forests? Ans: I would do following things to restore forests: 1. I would plant trees. 2. Twould motivate others to plant trees. 3. I would take care of existing trees. (Note: Points may vary. Any two correct points should be given marks.)	$\begin{aligned} & \mathbf{0 1} \\ & \mathbf{0 1} \\ & \mathbf{0 1} \end{aligned}$
	(C) (i)	Do as directed: Yesterday evening the phone (ring) three times while we (have) dinner. (Rewrite the sentence using the correct forms of the verbs in the brackets). Ans: Yesterday evening the phone rang three times while we were having dinfer.	02
	(ii)	While I (do) the language course, I (meet) lots of people from all over the world. (Rewrite the sentence using the correct forms of the verbs in the brackets). Ans: While I was doing the language course, I met lots of people from all over the world.	02
	(iii)	What a wonderful painting this is ! (Change into Assertive) Ans: This is a very wonderful painting.	02

Subject Name: Basic Mathematics

Model Answer Subject Code:

Important Instructions to examiners:

1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills.
4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
7) For programming language papers, credit may be given to any other program based on equivalent concept.

Q. No.	Qub Q.N.		Answers	Marking
Scheme				

| | b) $\|$
 Find x, if $\left\|\begin{array}{ccc}4 & 3 & 9 \\ 3 & -2 & 7 \\ 11 & 4 & x\end{array}\right\|=0$ | 02 |
| :--- | :--- | :--- | :--- |

$\begin{aligned} & \text { Q. } \\ & \text { No. } \end{aligned}$	$\begin{aligned} & \text { Sub } \\ & \text { Q.N. } \end{aligned}$	Answers	Marking Scheme	
1.	b) Ans c) Ans d) Ans e) Ans	$\begin{aligned} & \left\|\begin{array}{ccc} 4 & 3 & 9 \\ 3 & -2 & 7 \\ 11 & 4 & x \end{array}\right\|=0 \\ & 4(-2 x-28)-3(3 x-77)+9(12+22)=0 \\ & \therefore-8 x-112-9 x+231+306=0 \\ & \therefore-17 x+425=0 \\ & \therefore x=25 \end{aligned}$ Without using calculator,find the value of $\cos \left(105^{\circ}\right)$ $\begin{aligned} \cos \left(105^{\circ}\right)= & \cos \left(60^{\circ}+45^{\circ}\right) \\ & =\cos 60^{\circ} \cos 45^{\circ}-\sin 60^{\circ} \sin 45^{\circ} \\ & \left.=\left(\frac{1}{2}\right)\left(\\| \frac{1}{\sqrt{2}}\right)^{\prime}+\frac{(\sqrt{3}}{2}\right)\left(\frac{1}{\sqrt{2}}\right) \\ & =\frac{1-\sqrt{3}}{2 \sqrt{2}} \text { or }-0.2588 \end{aligned}$ The area of a rectangular garden is $3000 \mathrm{~m}^{2}$. Its sides are in the ratio 6:5.Find the perimeter of the garden \because Sides are in the ratio 6:5 \therefore length $=6 x$, breadth $=5 x$ Area $=(6 x)(5 x)$ $3000=30 x^{2}$ $\therefore x^{2}=100$ $\therefore x=10$ \therefore Length $=60 \mathrm{~m}$, Breadth $=50 \mathrm{~m}$ Perimeter $=2($ length + breadth $)$ $=2(60+50)=220$ Find the area of ring between two concentric cicles whose circumferences are 75 cm and 55 cm . Area of ring $=A($ larger circle $)-A($ smaller circle $)$	$1 / 2$ $1 / 2$ 1 1 02 $1 / 2$ $1 / 2$ $1 / 2$ $1 / 2$ $1 / 2$	

$\begin{gathered} \text { Q. } \\ \text { No. } \end{gathered}$	$\begin{aligned} & \text { Sub } \\ & \text { Q.N. } \end{aligned}$	Answers	Marking Scheme
1.	e)	$\begin{aligned} & \therefore \text { Area of ring }=\pi r_{1}^{2}-\pi r_{2}^{2}=\pi\left(r_{1}^{2}-r_{2}^{2}\right) \\ & \because 2 \pi r_{1}=75 \\ & \therefore r_{1}=\frac{75}{2 \pi} \\ & \because 2 \pi r_{2}=55 \\ & \therefore r_{2}=\frac{55}{2 \pi} \end{aligned}$ Area of ring $=\pi\left(r_{1}^{2}-r_{2}^{2}\right)$ $\begin{aligned} & =\pi \left\lvert\,\left(\left(\left.\frac{\left.15)^{2}(55)^{2}\right)}{(\overline{2 \pi})} \right\rvert\,-\left(\frac{\left.\mid \overline{2 \pi})^{\prime}\right)}{}=206.9\right.\right.\right.\right. \end{aligned}$ Find the range and coefficient of range 40, 52, 47, 28, 45, 36, 47, 50 Range $=L-S$ Coefficient of range $=\frac{L-S}{L+S}$ $=\frac{52-28}{52+28}$ $=0.3$ The two sets of observations are given below: $\begin{array}{cc} \text { Set I } & \text { Set II } \\ \bar{x}=82.5 & \bar{x}=48.75 \\ \sigma=7.3 & \sigma=8.35 \end{array}$ Which of two sets is more consistent? For Set I $C . V=\frac{\sigma^{\prime}}{x 100} \begin{gathered} \bar{x} \end{gathered}$	$1 / 2$ $1 / 2$ $1 / 2$ $1 / 2$ 02 1 1 02

$\begin{aligned} & \text { Q. } \\ & \text { No. } \end{aligned}$	$\begin{aligned} & \text { Sub } \\ & \text { Q.N. } \end{aligned}$	Answers	Marking Scheme	
2.	b）	If $A=\left[\begin{array}{lll}2 & 4 & 4 \\ 4 & 2 & 4 \\ 4 & 4 & 2\end{array}\right]$ ，find $A^{2}-8 A$ $\begin{gathered} A^{2}=A A=\left[\begin{array}{ccc} 2 & 4 & 4 \\ 4 & 2 & 4 \end{array} \\|\left[\begin{array}{lll} 2 & 4 & 4 \\ 4 & 2 & 4 \\ 4 & 4 & 2 \end{array}\right]\left[\begin{array}{lll} 4 & 4 & 2 \end{array}\right]\right. \\ A^{2}=\left[\begin{array}{ccc} 4+16+16 & 8+8+16 & 8+16+8 \\ 8+8+16 & 16+4+16 & 16+8+8 \\ 8+16+8 & 16+8+8 & 16+16+4 \end{array}\right] \end{gathered}$ $A^{2}=\left[\begin{array}{lll}36 & 32 & 32 \\ 32 & 36 & 32 \\ 32 & 32 & 36\end{array}\right]$ $8 A=8\left[\begin{array}{lll}2 & 4 & 4 \\ 4 & 2 & 4 \\ 4 & 4 & 2\end{array}\right]=\left[\begin{array}{lll}16 & 32 & 32 \\ 32 & 16 & 32 \\ 32 & 32 & 16\end{array}\right]$ $\therefore A^{2}-8 A=\left[\begin{array}{lll}366 & 32 & 32 \\ 32 & 36 & 32 \\ 32 & 32 & 36\end{array}\right]-\left[\begin{array}{ccc}16 & 32 & 32 \\ 32 & 16 & 32 \\ 32 & 32 & 16\end{array}\right]=\left[\begin{array}{ccc}20 & 0 & 0 \\ 0 & 20 & 0 \\ 0 & 0 & 20\end{array}\right]$ Resolve into partial fractions $\frac{3 x+2}{(x+1)\left(x^{2}-1\right)}$ $\begin{aligned} & \frac{3 x+2}{(x+1)^{2}(x-1)}=\frac{A}{x+1}+\frac{B}{(x+1)^{2}}+\frac{C}{x-1} \\ & \therefore 3 x+2=A(x-1)(x+1)+B(x-1)+C(x+1)^{2} \end{aligned}$ Put $x=-1$ $\therefore-3+2=B(-1-1)$ $B=\frac{1}{2}$ Put $x=1$	04 1 1 1 1 1 1 $1 / 2$ 04 1 1	

Q.	$\begin{aligned} & \text { Sub } \\ & \text { Q.N. } \end{aligned}$	Answers	Marking Scheme
3.		$\begin{aligned} & \tan \left(70^{\circ}-20^{\circ}\right)=\tan 50^{\circ} \\ & \frac{\tan 70^{\circ}-\tan 20^{\circ}}{1+\tan 70^{\circ} \tan 20^{\circ}}=\tan 50 \\ & \tan 70^{\circ}-\tan 20^{\circ}=\tan 50^{\circ}\left(1+\tan 70^{\circ} \tan 20^{\circ}\right) \\ & \tan 70^{\circ}-\tan 20^{\circ}=\tan 50^{\circ}+\tan 50^{\circ} \tan 70^{\circ} \tan 20^{\circ} \\ & \tan 70^{\circ}-\tan 50^{\circ}-\tan 20^{\circ}=\tan 70^{\circ} \tan 50^{\circ} \tan 20^{\circ} \end{aligned}$ Prove that $\frac{1+\sin \theta-\cos \theta}{1+\sin \theta+\cos \theta} \tan \left(\frac{\theta}{2}\right)$ $\begin{aligned} & \text { Prove that } \begin{aligned} & \frac{\cos 2 A+2 \cos 4 A+\cos 6 A}{\cos A+2 \cos 3 A+\cos 5 A}=\cos A-\sin A \tan 3 A \\ & \frac{\cos 2 A+2 \cos 4 A+\cos 6 A}{\cos A+2 \cos 3 A+\cos 5 A}=\frac{2 \cos 4 A+\cos 2 A+\cos 6 A}{2 \cos 3 A+\cos A+\cos 5 A} \\ & 2 \cos 4 A+2 \cos \left(\frac{2 A+6 A}{2}\right) \cos \left(\frac{2 A-6 A)}{2}\left(\frac{A+5 A}{2}\right)\right. \\ &\left.=\frac{\cos \left(\frac{A-5 A}{2}\right)}{2 \cos 3 A+2 \cos (}\right) \end{aligned} \end{aligned}$	1 1 $1 / 2$ $1 / 2$ 1 1 04 1 2 1 1 1

$\begin{gathered} \text { Q. } \\ \text { No. } \end{gathered}$	$\begin{aligned} & \text { Sub } \\ & \text { Q.N. } \end{aligned}$	Answers	Marking Scheme
3.	c） d） Ans		1／2

$\begin{aligned} & \text { Q. } \\ & \text { No. } \end{aligned}$	$\begin{aligned} & \text { Sub } \\ & \text { Q.N. } \end{aligned}$	Answers	Marking Scheme
4.	b） Ans		04

$\begin{aligned} & \text { Q. } \\ & \text { No. } \end{aligned}$	$\begin{aligned} & \text { Sub } \\ & \text { Q.N. } \end{aligned}$	Answers	Marking Scheme
4.	b） c） Ans d） Ans		1 $1 / 2$ 04 1 1 1 1 1 04 1 1

$\begin{aligned} & \text { Q. } \\ & \text { No. } \end{aligned}$	$\begin{aligned} & \text { Sub } \\ & \text { Q.N. } \end{aligned}$	Answers	Marking Scheme
4.	e）		1

S^R^SWへTI Institute of Technology

\begin{tabular}{|c|c|c|c|}
\hline $$
\begin{aligned}
& \text { Q. } \\
& \text { No. }
\end{aligned}
$$ \& $$
\begin{aligned}
& \text { Sub } \\
& \text { Q.N. }
\end{aligned}
$$ \& Answers \& Marking Scheme

\hline 4. \& e)

a)
Ans
i)

ii)

ii \& \begin{tabular}{l}
$$
\begin{aligned}
& \begin{aligned}
\sin \left(-330^{\circ}\right)= & -\sin \left(330^{\circ}\right) \\
= & -\sin \left(90^{\circ} \times 3+60^{\circ}\right) \\
= & -\left(-\cos 60^{\circ}\right)={ }_{2}^{1}
\end{aligned} \\
& \sin 420^{\circ} \cos 390^{\circ}+\cos \left(-300^{\circ}\right) \sin \left(-330^{\circ}\right) \\
& =\binom{\sqrt{3}}{2}\binom{\sqrt{3}}{2}+\binom{4}{2}\binom{4}{2} \\
& =1
\end{aligned}
$$

Attempt any TWO of the following:

Attempt the following:

Find the acute angle between the lines $y=5 x+6$ and $y=x$.

Find the equation of the line passing through the point $(4,5)$ and perpendicular to the line
$$
7 x-5 y=420
$$

 \&

$1 / 2$

$1 / 2$

\hline 1

1

1

12

06

03

1

1

1
\end{tabular}

\hline
\end{tabular}

S^R^SWへTI Institute of Technology

Q. No.	$\begin{aligned} & \text { Sub } \\ & \text { Q.N. } \end{aligned}$	Answers	Marking Scheme
5.	a)ii) Ans b) i) Ans ii) Ans	$\text { Point }=\left(x_{1}, y_{1}\right)=(4,5)$ Slope of the line $7 x-5 y=420$ is, $m=-\frac{a}{b}=-\frac{7}{-5}=\frac{7}{5}$ \therefore Slope of the required line is, $m=-\frac{1}{m}=\frac{-5}{7}$ \therefore equation is, Find the equation of the line passing through $(1,7)$ and having slope 2 units. Point $=\left(x_{1}, y_{1}\right)=(1,7) \&$ slope $=2$ \therefore Equation of line is, $\begin{aligned} & \quad y-y_{1}=m\left(x-x_{1}\right) \\ & \therefore y-7=2(x-1) \\ & \therefore 2 x-y+5=0 \end{aligned}$	

$\begin{gathered} \text { Q. } \\ \text { No. } \end{gathered}$	$\begin{gathered} \text { Sub } \\ \text { Q. } \\ \text { N. } \end{gathered}$	Answers	Marking Scheme
6.	b）		1

SAR^SW^TI Institute of Technology

$\begin{aligned} & \text { Q. } \\ & \text { No. } \end{aligned}$	$\begin{aligned} & \text { Sub } \\ & \text { Q. } \\ & \text { N. } \end{aligned}$	Answers	Marking Schem
6.	c)	Matrix of cofactors $=\left[\begin{array}{ccc}-11 & 27 & 20 \\ 9 & -9 & 0 \\ 4 & 0 & -4\end{array}\right]$ $\operatorname{Adj} . A=\left[\begin{array}{ccc}-11 & 9 & 4 \\ 27 & -9 & 0 \\ 20 & 0 & -4\end{array}\right]$ $A^{-1}=\frac{1}{=}$ Adj. A $A^{-1}=\frac{1}{36}\left[\begin{array}{ccc}-11 & 9 & 4 \\ 27 & -9 & 0 \\ 20 & 0 & -4\end{array}\right]$ $\therefore X=A^{-1} B$ 	${ }_{1 / 2}$

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
 (Autonomous)

(ISO/IEC - 27001-2013 Certified)

WINTER-18 EXAMINATION

Subject Name: Basic Mathematics

Model Answer
Subject Code:
22103

Important Instructions to Examiners:

1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills.
4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
7) For programming language papers, credit may be given to any other program based on equivalent concept.

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
(ISO/IEC - 27001-2013 Certified)
WINTER-18 EXAMINATION
Subject Name: Basic Mathematics
Model Answer
Subject Code:
22103

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

$\begin{aligned} & \text { Q. } \\ & \text { No. } \end{aligned}$	$\begin{aligned} & \text { Sub } \\ & \text { Q.N. } \end{aligned}$	Answers	Marking Scheme
2.	c)	Solve the following equations by Cramer's rule: $\begin{aligned} & x+y+z=2 \\ & y+z=1 \\ & x+z=3 \end{aligned}$	04
	Ans	$\begin{aligned} D & =\left\|\begin{array}{lll} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{array}\right\| \\ & =1(1-0)-1(0-1)+1(0-1)=1 \end{aligned}$	1
		$\begin{aligned} D_{x} & =\left\|\begin{array}{lll} 2 & 1 & 1 \\ 1 & 1 & 1 \\ 3 & 0 & 1 \end{array}\right\| \\ & =2(1-0)-1(1-3)+1(0-3)=1 \\ \therefore x & =\frac{D_{x}}{D}=\frac{1}{1}=1 \end{aligned}$	1
		$\begin{aligned} D_{y} & =\left\|\begin{array}{lll} 1 & 2 & 1 \\ 0 & 1 & 1 \\ 1 & 3 & 1 \end{array}\right\| \\ & =1(1-3)-2(0-1)+1(0-1)=-1 \\ \therefore y & =\frac{D_{y}}{D}=\frac{-1}{1}=-1 \end{aligned}$	1
		$\begin{aligned} D_{z} & =\left\|\begin{array}{lll} 1 & 1 & 2 \\ 0 & 1 & 1 \\ 1 & 0 & 3 \end{array}\right\| \\ & =1(3-0)-1(0-1)+2(0-1)=2 \\ \therefore z & =\frac{D_{z}}{D}=\frac{2}{1}=2 \end{aligned}$	1

SAR^SW^TI Institute of Technology

$\begin{aligned} & \text { Q. } \\ & \text { No. } \end{aligned}$	$\begin{aligned} & \text { Sub } \\ & \text { Q.N. } \end{aligned}$	Answers	Marking Scheme
3.	c) Ans d) Ans	$\begin{aligned} & \frac{\sin 4 A+\sin 5 A+\sin 6 A}{\cos 4 A+\cos 5 A+\cos 6 A} \\ & =\frac{(\sin 4 A+\sin 6 A)+\sin 5 A}{(\cos 4 A+\cos 6 A)+\cos 5 A} \\ & =\frac{2 \sin \left(\frac{4 A+6 A}{2}\right) \cos \left(\frac{4 A-6 A}{2}\right)+\sin 5 A}{2 \cos \left(\frac{4 A+6 A}{2}\right) \cos \left(\frac{4 A-6 A}{2}\right)+\cos 5 A} \\ & =\frac{2 \sin 5 A \cos (-A)+\sin 5 A}{2 \cos 5 A \cos (-A)+\cos 5 A} \\ & =\frac{\sin 5 A[2 \cos (-A)+1]}{\cos 5 A[2 \cos (-A)+1]} \\ & =\tan 5 A \end{aligned}$ Prove : $\cos ^{-1}\left(\frac{4}{5}\right)+\cos ^{-1}\left(\frac{12}{13}\right)=\cos ^{-1}\left(\frac{33}{65}\right)$ Let $\cos ^{-1}\left(\frac{4}{5}\right)=A$ $\begin{aligned} & \therefore \cos A \end{aligned}=\frac{4}{5}, \begin{aligned} \therefore \sin ^{2} A & =1-\cos ^{2} A \\ & =1-\frac{16}{25} \\ & =\frac{9}{25} \end{aligned}$ $\therefore \sin A=\frac{3}{5}$ $\cos ^{-1}\left(\frac{12}{13}\right)=B$ $\begin{aligned} & \therefore \cos B=\frac{12}{13} \\ & \therefore \sin ^{2} B=1-\cos ^{2} B \\ & \therefore \sin ^{2} B=1-\frac{144}{169} \end{aligned}$	2 1 1 $1 / 2$ $1 / 2$ 1 04 1

$\begin{aligned} & \text { Q. } \\ & \text { No. } \end{aligned}$	$\begin{aligned} & \text { Sub } \\ & \text { Q.N. } \end{aligned}$	Answers	Marking Scheme
3.	d)	$\left.\begin{array}{l} \therefore \sin ^{2} B=\frac{25}{169} \\ \begin{array}{rl} \therefore \sin B=\frac{5}{13} \end{array} \\ \begin{array}{rl} \therefore \cos (A+B) & =\cos A \cos B-\sin A \sin B \\ & =\left(\frac{4}{5}\right)\left(\frac{12}{13}\right)-\left(\frac{3}{5}\right)\left(\frac{5}{13}\right) \\ & =\frac{48}{65}-\frac{15}{65} \end{array} \\ \therefore \cos (A+B)=\frac{33}{65} \end{array}\right] \begin{aligned} & \therefore A+B=\cos ^{-1}\left(\frac{33}{65}\right) \\ & \therefore \cos ^{-1}\left(\frac{4}{5}\right)+\cos ^{-1}\left(\frac{12}{13}\right)=\cos ^{-1}\left(\frac{33}{65}\right) \end{aligned}$ OR Let $\cos ^{-1}\left(\frac{4}{5}\right)=A$ $\therefore \cos A=\frac{4}{5}$ $\therefore \tan A=\frac{3}{4}$ $A=\tan ^{-1}\left(\frac{3}{4}\right)$ $\therefore \cos ^{-1}\left(\frac{4}{5}\right)=\tan ^{-1}\left(\frac{3}{4}\right)$ $\cos ^{-1}\left(\frac{12}{13}\right)=B$ $\therefore \cos B=\frac{12}{13}$ $\therefore \tan B=\frac{5}{12}$	1 $1 / 2$ $1 / 2$

WINTER - 18 EXAMINATION

Subject Name: Basic Mathematics

Model Answer

Subject Code:
22103

$\begin{aligned} & \text { Q. } \\ & \text { No. } \end{aligned}$	$\begin{aligned} & \text { Sub } \\ & \text { Q.N. } \end{aligned}$	Answers	Marking Scheme
3.	d)	$\begin{aligned} & B=\tan ^{-1}\left(\frac{5}{12}\right) \\ & \begin{array}{l} \therefore \cos ^{-1}\left(\frac{12}{13}\right)=\tan ^{-1}\left(\frac{5}{12}\right) \\ \text { L.H.S. } \end{array}=\tan ^{-1}\left(\frac{3}{4}\right)+\tan ^{-1}\left(\frac{5}{12}\right) \\ & \quad=\tan ^{-1}\left(\frac{\frac{3}{4}+\frac{5}{12}}{1-\left(\frac{3}{4}\right)\left(\frac{5}{12}\right)}\right) \\ & \quad=\tan ^{-1}\left(\frac{56}{33}\right) \end{aligned}$ Let $\tan ^{-1}\left(\frac{56}{33}\right)=C$ $\begin{aligned} & \therefore \tan C=\frac{56}{33} \\ & \therefore \cos C=\frac{33}{65} \end{aligned}$ $\therefore C=\cos ^{-1}\left(\frac{33}{65}\right)$ $\therefore \cos ^{-1}\left(\frac{4}{5}\right)+\cos ^{-1}\left(\frac{12}{13}\right)=\cos ^{-1}\left(\frac{33}{65}\right)$ Attempt any three of the following: If $A=\left[\begin{array}{lll}2 & 4 & 4 \\ 4 & 2 & 4 \\ 4 & 4 & 2\end{array}\right]$ show that $A^{2}-8 A$ is scalar matrix. $\begin{aligned} & A^{2}-8 A \\ & =A \cdot A-8 A \end{aligned}$	1

(ISO/IEC - 27001-2013 Certified)

WINTER - 18 EXAMINATION

Subject Name: Basic Mathematics
Model Answer
Subject Code:
22103

(ISO/IEC - 27001-2013 Certified)
WINTER - 18 EXAMINATION
Subject Name: Basic Mathematics
Model Answer
Subject Code:
22103

WINTER - 18 EXAMINATION

Subject Name: Basic Mathematics

WINTER - 18 EXAMINATION

Subject Name: Basic Mathematics

Model Answer

Subject Code:
22103

WINTER - 18 EXAMINATION

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
(Autonomous)
(ISO/IEC - 27001-2013 Certified)
WINTER - 18 EXAMINATION
Subject Name: Basic Mathematics
Model Answer
Subject Code:
22103

$\begin{aligned} & \text { Q. } \\ & \text { No. } \end{aligned}$	$\begin{aligned} & \text { Sub } \\ & \text { Q.N. } \end{aligned}$	Answers	Marking Scheme
5.	b)(ii) Ans	Find the distance between lines $3 x+2 y=5$ and $6 x+4 y=6$ $\begin{aligned} & L_{1}: 3 x+2 y-5=0 \quad \text { and } L_{2}: 6 x+4 y-6=0 \\ \therefore & L_{1}: 6 x+4 y-10=0 \quad \text { and } L_{2}: 6 x+4 y-6=0 \\ \therefore & a=6, \quad b=4, \quad c_{1}=-10 \text { and } c_{2}=-6 \\ d & =\left\|\frac{c_{2}-c_{1}}{\sqrt{a^{2}+b^{2}}}\right\| \\ & =\left\|\frac{-6+10}{\sqrt{6^{2}+4^{2}}}\right\| \\ & =\left\|\frac{4}{\sqrt{52}}\right\| \\ & =0.555 \quad \text { or } \frac{2}{\sqrt{13}} \end{aligned}$	03
	c) (i) Ans	Attempt the following: A square grassy plot is of side 100 metre.It has a gravel path 10 metres wide all round it on the inside. Find the area of path. $\begin{aligned} \text { Area of path } & =\text { Area of grassy plot }- \text { Area of inner square of grassy plot } \\ & =(100)^{2}-(80)^{2} \\ & =3600 \end{aligned}$	06 03 2 1
	c)(ii) Ans	The volume of cube is $1000 \mathrm{~cm}^{3}$. Find its total surface area. Let side of cube $=l$ \therefore volume of cube $=l^{3}=1000$ $\therefore l=10$ $\begin{aligned} \text { Total surface area of cube } & =6 l^{2} \\ & =6(10)^{2} \\ & =600 \end{aligned}$	03 1 1 1 1
6.	a)	Attempt any two of the following: Find mean, standard deviation and coefficient of variance of the following data:	12

WINTER - 18 EXAMINATION

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

(ISO/IEC - 27001-2013 Certified)

WINTER - 18 EXAMINATION

Subject Name: Basic Mathematics
Model Answer
Subject Code:
22103

(ISO/IEC - 27001-2013 Certified)
WINTER - 18 EXAMINATION

Subject Name: Basic Mathematics

Model Answer
Subject Code:
22103

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
(Autonomous)
(ISO/IEC - 27001-2013 Certified)

WINTER - 18 EXAMINATION

Subject Name: Basic Mathematics
Model Answer
Subject Code:
22103

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
(Autonomous)
(ISO/IEC-27001-2013 Certified)

WINTER - 18 EXAMINATION

Subject Name: Basic Mathematics
Model Answer
Subject Code:
22103

$\begin{aligned} & \text { Q. } \\ & \text { No. } \end{aligned}$	$\begin{gathered} \text { Sub } \\ \text { Q. N. } \end{gathered}$	Answers	Marking Scheme
6.	c)		1

(ISO/IEC - 27001-2013 Certified)
WINTER - 18 EXAMINATION
Subject Name: Basic Mathematics
Model Answer
Subject Code:
22103

