

Vision:

To Visualize the creation of skilled, proficient IT professionals to meet current challenges.

Mission:

- To encourage young minds for training& entrepreneurship.
- To convey standard education with a rapidly changing environment with ethical values.
- To provide an environment where students can continuously learn, apply & communicate knowledge.

Subject Name:-Applied Mathematics Date:Assignment No:-01

Topic Name:-

Course outcomes: - Solve board –based technology problems using the principles Of basic mathematics

Last date of Submission:-

Name of course coordinator:- Mrs Vrushali Patil

Vision:

To Visualize the creation of skilled, proficient IT professionals to meet current challenges.

Mission:

- To encourage young minds for training& entrepreneurship.
- To convey standard education with a rapidly changing environment with ethical values.
- To provide an environment where students can continuously learn, apply & communicate knowledge.

Subject Name:-Applied Mathematics Assignment No:-02 Date:-

Topic Name:-

Course outcomes :- Solve board –based technology problems using the principles Of basic mathematics

1. Find
$$\frac{dy}{dx'}$$
 If $y = \frac{sinx}{1+cosx}$
2. Differntiate $\frac{e^x - 1}{e^x + 1}$ with respect to 'x'
3. If log ($x + \sqrt{x^2 + a^2}$), Find $\frac{dy}{dx}$.
4. If log($\sqrt{x^2 + y^2}$) = $\tan^{-1}\frac{y}{x}$ Find $\frac{dy}{dx}$
5. Differentite with respect to'x' $\sin^{-1}(\frac{2x}{1+x^2})$
6. Differentite with respect to'x' $\sec^{-1}(\frac{1}{4x^3 - 3x})$
7. Differentite with respect to'x' $\tan^{-1}(\frac{sinx}{1+cosx})$
8. Differentite with respect to'x' $\tan^{-1}(\frac{5x}{1-6x^2})$
9. $x^2 + y^2 = 4xy$ Find $\frac{dy}{dx}$ at (2, -1)
10. Find $\frac{dy}{dx}$ If $y = x^x + sin^x$

Last date of Submission:-Name of course coordinator:- Mrs Vrushali Patil

Vision:

To Visualize the creation of skilled, proficient IT professionals to meet current challenges.

Mission:

- To encourage young minds for training& entrepreneurship.
- To convey standard education with a rapidly changing environment with ethical values.

To provide an environment where students can continuously learn, apply & communicate knowledge.

Subject Name:-Applied Mathematics Date:-Assignment No:-03

Topic Name:-

Course outcomes :- Solve board –based technology problems using the principles Of basic mathematics

1. Find the radius of th curve xy=c at point (c,c)

2. Find maximum and minima of the equation tanx-2x

3. Find maximum and minima of the equation x^3 -18 x^2 +96x

4. Find the equation of tangent and normal to the curve y=x(2-x)at point (2,0)

5.Find the point on the curve $y=7x-3x^2$ where the inclination of the tangent is 45^0 .

6. A telegraph wire hangs in the form of a curve y = a log [sec $(\frac{x}{a})$].

Where a is a constant. Show that, radius of curvature at any point is a.sec($\frac{x}{a}$)

7. Find the equation of tangent to the curve $y=9x^2-12x+7$ which is parallel to x axis.

Last date of Submission:-Name of course coordinator:- Mrs Vrushali Patil

Vision:

To Visualize the creation of skilled, proficient IT professionals to meet current challenges.

Mission:

- To encourage young minds for training& entrepreneurship.
- To convey standard education with a rapidly changing environment with ethical values.

To provide an environment where students can continuously learn, apply & communicate knowledge.

Subject Name:-Applied Mathematics Date:-Assignment No:-04

Topic Name:-

Course outcomes :- Solve board –based technology problems using the principles Of basic mathematics

1.Evaluate
$$\int \frac{1}{x^2+3x+2} dx$$

2. Evaluate $\int \frac{1}{x[9+(logx)^2]} dx$
3. Evaluate $\int \frac{1}{(x+3)(x+2)} dx$
4. Evaluate $\int x \cdot e^x dx$
5.Evaluate $\int sin^3 x \cdot cosx dx$
x

6.Evaluate
$$\int \frac{e^x (x+1)}{\cos^2(x.e^x)}$$

7. Evaluate $\int \frac{dx}{5-4\cos x} dx$

8. Evaluate
$$\int e^e + x^e + e^x dx$$

9. Evaluate $\int x \cdot e^x dx$
10. Evaluate $\int \frac{4x+3}{x^{2+}5x+9} dx$
11. Evaluate $\int sin^3 x dx$
12. Evaluate $\int \frac{x}{(x^2-1)(x^2+2)} d$

13. Evaluate
$$\int \frac{(\sin^{-1})x^3}{\sqrt{1-x^2}} dx$$

Last date of Submission:-Name of course coordinator:- Mrs Vrushali Patil

Vision:

To Visualize the creation of skilled, proficient IT professionals to meet current challenges.

Mission:

- To encourage young minds for training& entrepreneurship.
- To convey standard education with a rapidly changing environment with ethical values.

Date:-

Institute of Technology

Learn Live Achieve and Contribute Kharghar, Navi Mumbai - 410 210.

To provide an environment where students can continuously learn, apply & communicate knowledge.

Subject Name:-Applied Mathematics Assignment No:-05

Topic Name:-

Course outcomes :- Solve board –based technology problems using the principles Of basic mathematics

1. Evaluate $\int_0^2 \frac{5x+2}{x^2+4} dx$ 3. Evaluate $\int_0^{\frac{\pi}{2}} \frac{1}{1+\sqrt[n]{\cot x}} dx$ 4. Evaluate $\int_1^3 \frac{\sqrt[3]{x+5}}{\sqrt[3]{x+5}+\sqrt[3]{9-x}} dx$

5.Find the area of the region bounded by the curve y=4x²,x-axis and the lines x=1 andx=2

6. Find the area of circle $x^2+y^2=16$ using Integration.

- 7.Find the area bounded between the parabolas $y^2=9x$ and $x^2=9y$
- 8. Find the area between the parabola $y=x^2+3$ and y=x+3

9.Find the area between the parabola $y=4x-x^2$ and x-axis.

10.By using method of integration find the area of circle $x^2+y^2=a^2$

Last date of Submission:-Name of course coordinator:- Mrs Vrushali Patil

SARAS

Vision:

To Visualize the creation of skilled, proficient IT professionals to meet current challenges.

Mission:

- To encourage young minds for training& entrepreneurship.
- To convey standard education with a rapidly changing environment with ethical values.

To provide an environment where students can continuously learn, apply & communicate knowledge.

Subject Name:-Applied Mathematics Date:-

Assignment No:-06

Topic Name:-

Course outcomes :- Solve board –based technology problems using the principles Of basic mathematics

1. Find the order and degree of the differential equation $\sqrt[3]{\frac{dy}{dx} + y} = \sqrt[4]{\frac{d^2y}{dx^2}}$ 2. From the differential equation whose solution is , y=Acos3t +Bsin3t 3. Verify that y = logx is a solution of differential equation $x\frac{d^2y}{dx^2} + \frac{dy}{dx} = 0$ 4. Solve the differential equation $\frac{dy}{dx} = e^{3x-2y} + x^2e^{-2y}$ 5. Solve sec²x.tanydx+sec²y.tanx=0 if $y = \frac{\pi}{4}$ when $x = \frac{\pi}{4}$ 6. Solve the differential equation $\frac{dy}{dx} = (4x + y + 1)^2$ 7. Solve the differential equation $\frac{dy}{dx} = \cos(x+y)$ 8. Solve $(x^3 + y^3) \frac{dy}{dx} = x^2y$ 9. Solve $\frac{dy}{dx}$ +ycotx=cosecx. 10. Solve the differential equation $(x+1)\frac{dy}{dx}$ -y=e^x (1+x)²

Last date of Submission:-

Name of course coordinator:- Mrs Vrushali Patil

Vision:

To Visualize the creation of skilled, proficient IT professionals to meet current challenges.

Mission:

- To encourage young minds for training& entrepreneurship.
- To convey standard education with a rapidly changing environment with ethical values.
 - To provide an environment where students can continuously learn, apply & communicate knowledge.

Subject Name:-Applied Mathematics Date:-Assignment No:-07

Topic Name:-

Course outcomes :- Solve board --based technology problems using the principles Of basic mathematics

i) Solve the equation by Gauss - Seidal method. (two iterations only) 10x + y + 2z = 13, 3x + 10y + z = 14, 2x + 3y + 10z = 15ii) Solve the following system of equation by using Jacobi-Iteration method. (two iterations) 5x + 2y + z = 12, x + 4y + 2z = 15, x + 2y + 5z = 202) Solve the following system of equations by using Gauss elimination method. x + 2y + 3z = 14, 3x + y + 2z = 11, 2x + 3y + z = 11 3) Using Newton – Raphson method find the approximate root of the equation (use four iterations)

 $x^2 + x - 5 = 0$

4) Solve the following :

Find the root of the equation $\cos x - x e x = 0$ using the regular-falsi method. (carry out two iterations)

5) Solve the following system of equations by using Gauss Elimination method.

2x + 3y + z = 13, x - y - 2z = -1, 3x + y + 4z = 15.

5) Solve the following system of equations by using Gauss Seidal method.

20x + y - 2z = 17; 3x + 20y - z = -18; 2x - 3y + 20z = 25.

6) Using Newton-Raphson method to find the approximate root of the equation x log10 x= 1.2. (carry out three iterations)

7) Solve the equation by Gauss - Seidal method. (two iterations only)

10x + y + 2z = 13, 3x + 10y + z = 14, 2x + 3y + 10z = 15

8) Solve the following system of equation by using Jacobi-Iteration method. (two iterations)

5x + 2y + z = 12, x + 4y + 2z = 15, x + 2y + 5z = 20

9) Solve the following system of equations by using Gauss elimination method.

x + 2y + 3z = 14, 3x + y + 2z = 2x + 3y + z = 11

5x + 2y + z = 12,

x + 4y + 2z = 15,

x + 2y + 5z = 20

0 4. Solve the differential equation $\frac{dy}{dx} = e^{3x-2y} + x^2e^{-2y}$ 5. Solve sec²x.tanydx+sec²y.tanx=0 if $y=\frac{\pi}{4}$ when $x=\frac{\pi}{4}$ 6. Solve the differential equation $\frac{dy}{dx} = (4x + y + 1)^2$ 7. Solve the differential equation $\frac{dy}{dx} = \cos(x+y)$ 8. Solve $(x^3 + y^3) \frac{dy}{dx} = x^2y$ 9. Solve $\frac{dy}{dx}$ +ycotx=cosecx. 10. Solve the differential equation $(x+1) \frac{dy}{dx} - y = e^x (1+x)^2$

Last date of Submission:-Name of course coordina