

n Live Achieve and Contribute Kharabar Navi Mumbai - 410 710

Science And Humanities Department (Academic Year :2022-23)

Vision:-"To contribute to society through excellence in scientific & knowledgeable based education of computer science professional".

Mission:-

- To transform students into technically components, socially responsible & ethical computer science professionals.
- To promote a creative teaching-learning process that will strive for academic excellence in the field of computer engineering.
- To enhance the technical expertise of students through workshop & industry-institute interaction.

Subject Name:-Applied Mathematics

Date:-

Assignment No:-01

Topic Name:-

Course outcomes: - Solve board -based technology problems using the principles Of basic mathematics

1) a.
$$F(x) = \sin x$$
, Show that $F(3x) = 3f(x) - 4f^3(x)$
b. $F(x) = \frac{1}{1-x}$ find $f[f(x)]$

2) a.
$$F(x) = \frac{1}{1-x}$$
 show that $f\{f[f(x)]\} = x$

b. State weather the function $f(x) = \frac{a^x + a^{-x}}{2}$ is even or add function

3)
$$F(x) = 3x^4 + x^2 = 5-3\cos + 2\sin^2 x$$
 then show that $f(x) + f(-x) = 2f(x)$

4) If
$$f(x) = \log \frac{1+x}{1-x}$$
 then prove that $f(\frac{2x}{1+x^2}) = 2f(x)$

5) If
$$Y=f(x) = \frac{2x-3}{3x-2}$$
 then prove that $x=f(y)$

Last date of Submission:-

Name of course coordinator:- Mrs Vrushali Patil

Vision:-"To contribute to society through excellence in scientific & knowledgeable based education of computer science professional".

Mission:-

- To transform students into technically components, socially responsible & ethical computer science professionals.
- To promote a creative teaching-learning process that will strive for academic excellence in the field of computer engineering.
- To enhance the technical expertise of students through workshop & industry-institute interaction.

Subject Name:-Applied Mathematics

Date:-

Assignment No:-02

Topic Name:-

Course outcomes: - Solve board -based technology problems using the principles Of basic mathematics

1. Find
$$\frac{dy}{dx}$$
, If $y = \frac{sinx}{1 + cosx}$

1. Find
$$\frac{dy}{dx}$$
, If $y = \frac{sinx}{1 + cosx}$
2. Differntiate $\frac{e^x - 1}{e^x + 1}$ with respect to 'x'

3.If log (
$$x+\sqrt{x^2+a^2}$$
), Find $\frac{dy}{dx}$.

4. If
$$\log(\sqrt{x^2 + y^2}) = \tan^{-1} \frac{y}{x}$$
 Find $\frac{dy}{dx}$

5. Differentite with respect to
$$x' \sin^{-1}(\frac{2x}{1+x^2})$$

6. Differentite with respect to'x'
$$\sec^{-1}(\frac{1}{4x^3-3x})$$

7. Differentite with respect to'x'
$$tan^{-1}(\frac{sinx}{1+cosx})$$

8. Differentite with respect to'x'
$$tan^{-1}(\frac{5x}{1-6x^2})$$

9.
$$x^2 + y^2 = 4xy \text{ Find } \frac{dy}{dx} at (2, -1)$$

10. Find
$$\frac{dy}{dx}$$
 If $y=x^x + sin^x$

Last date of Submission:-

Name of course coordinator: - Mrs Vrushali Patil

Vision:-"To contribute to society through excellence in scientific & knowledgeable based education of computer science professional".

Mission:-

- To transform students into technically components, socially responsible & ethical computer science professionals.
- To promote a creative teaching-learning process that will strive for academic excellence in the field of computer engineering.
- To enhance the technical expertise of students through workshop
 & industry-institute interaction.

Subject Name:-Applied Mathematics

Date:-

Assignment No:-03

Topic Name:-

Course outcomes :- Solve board -based technology problems using the principles Of basic mathematics

- 1. Find the radius of th curve xy=c at point (c,c)
- 2. Find maximum and minima of the equation tanx-2x
- 3. Find maximum and minima of the equation x^3 -18 x^2 +96x
- 4. Find the equation of tangent and normal to the curve y=x(2-x) at point (2,0)
- 5. Find the point on the curve $y=7x-3x^2$ where the inclination of the tangent is 45^0 .
- 6. A telegraph wire hangs in the form of a curve y = a log [sec $(\frac{x}{a})$]. Where a is a constant. Show that, radius of curvature at any point is a.sec($\frac{x}{a}$)
- 7. Find the equation of tangent to the curve $y=9x^2-12x+7$ which is parallel to x axis.

Last date of Submission:Name of course coordinator:- Mrs Vrushali Patil

Vision:-"To contribute to society through excellence in scientific & knowledgeable based education of computer science professional".

Mission:-

- To transform students into technically components, socially responsible & ethical computer science professionals.
- To promote a creative teaching-learning process that will strive for academic excellence in the field of computer engineering.
- To enhance the technical expertise of students through workshop & industry-institute interaction.

Subject Name:-Applied Mathematics

Date:-

Assignment No:-04

Topic Name:-

Course outcomes :- Solve board -based technology problems using the principles Of basic mathematics

1.Evaluate
$$\int \frac{1}{x^2 + 3x + 2} dx$$

2. Evaluate
$$\int \frac{1}{x[9+(log x)^2]} dx$$

3. Evaluate
$$\int \frac{1}{(x+3)(x+2)} dx$$

4. Evaluate
$$\int x. e^x dx$$

5.Evaluate
$$\int sin^3 x. cos x dx$$

8. Evaluate
$$\int e^e + x^e + e^x dx$$

9. Evaluate
$$\int x. e^x dx$$

10.Evaluate
$$\int \frac{4x+3}{x^{2+}5x+9} dx$$

11. Evaluate
$$\int sin^3 x dx$$

12. Evaluate
$$\int \frac{x}{(x^2-1)(x^2+2)} dx$$

Χ

6. Evaluate
$$\int \frac{e^x (x+1)}{\cos^2(x \cdot e^x)}$$

7. Evaluate
$$\int \frac{dx}{5-4\cos x} dx$$

13. Evaluate $\int \frac{(\sin^{-1}) x^3}{\sqrt{1-x^2}} dx$

Last date of Submission:-

Name of course coordinator:- Mrs Vrushali Patil

Vision:-"To contribute to society through excellence in scientific & knowledgeable based education of computer science professional".

Mission:-

- To transform students into technically components, socially responsible & ethical computer science professionals.
- To promote a creative teaching-learning process that will strive for academic excellence in the field of computer engineering.
- To enhance the technical expertise of students through workshop & industry-institute interaction.

Subject Name:-Applied Mathematics

Date:-

Assignment No:-05

Topic Name:-

Course outcomes: - Solve board -based technology problems using the principles Of basic mathematics

1. Evaluate
$$\int_0^2 \frac{5x+2}{x^2+4} dx$$

2. Evaluate
$$\int_0^{\frac{\pi}{2}} \frac{1}{1 + \sqrt[n]{\cot x}} dx$$

3.Evaluate
$$\int_0^{\frac{\pi}{4}} \log (1 \tan x)$$

3. Evaluate
$$\int_0^{\frac{\pi}{4}} \log (1 \tan x)$$
 4. Evaluate. $\int_1^3 \frac{\sqrt[3]{x+5}}{\sqrt[3]{x+5} + \sqrt[3]{9-x}} dx$

5. Find the area of the region bounded by the curve y=4x², x-axis and the lines x=1 and x=2

6. Find the area of circle $x^2+y^2=16$ using Integration.

7. Find the area bounded between the parabolas $y^2=9x$ and $x^2=9y$

8. Find the area between the parabola $y=x^2+3$ and y=x+3

9. Find the area between the parabola $y=4x-x^2$ and x-axis.

10.By using method of integration find the area of circle $x^2+y^2=a^2$

Last date of Submission:-

Name of course coordinator: - Mrs Vrushali Patil

Vision:-"To contribute to society through excellence in scientific & knowledgeable based education of computer science professional".

Mission:-

- To transform students into technically components, socially responsible & ethical computer science professionals.
- To promote a creative teaching-learning process that will strive for academic excellence in the field of computer engineering.
- To enhance the technical expertise of students through workshop & industry-institute interaction.

Subject Name:-Applied Mathematics

Date:-

Assignment No:-06

Topic Name:-

Course outcomes :- Solve board -based technology problems using the principles Of basic mathematics

- 1. Find the order and degree of the differential equation $\sqrt[3]{\frac{dy}{dx} + y} = \sqrt[4]{\frac{d^2y}{dx^2}}$
- 2. From the differential equation whose solution is , y=Acos3t +Bsin3t
- 3. Verify that $y = \log x$ is a solution of differential equation $x \frac{d^2y}{dx^2} + \frac{dy}{dx} = 0$
- 4. Solve the differential equation $\frac{dy}{dx} = e^{3x-2y} + x^2e^{-2y}$
- 5. Solve $\sec^2 x$.tanydx+ $\sec^2 y$.tanx=0 if $y = \frac{\pi}{4}$ when $x = \frac{\pi}{4}$
- 6. Solve the differential equation $\frac{dy}{dx} = (4x + y + 1)^2$
- 7. Solve the differential equation $\frac{dy}{dx} = \cos(x+y)$
- 8. Solve $(x^3 + y^3) \frac{dy}{dx} = x^2 y$
- 9. Solve $\frac{dy}{dx}$ +ycotx=cosecx.
- 10. Solve the differential equation $(x+1) \frac{dy}{dx}$ -y=e^x $(1+x)^2$

Last date of Submission:-

Name of course coordinator:- Mrs Vrushali Patil

Vision:-"To contribute to society through excellence in scientific & knowledgeable based education of computer science professional".

Mission:-

- To transform students into technically components, socially responsible & ethical computer science professionals.
- To promote a creative teaching-learning process that will strive for academic excellence in the field of computer engineering.
- To enhance the technical expertise of students through workshop & industry-institute interaction.

Subject Name:-Applied Mathematics

Assignment No:-07

Topic Name:-

Course outcomes :- Solve board -based technology problems using the principles Of basic mathematics

i) Solve the equation by Gauss - Seidal method. (two iterations only)

$$10x + y + 2z = 13$$
,

$$3x + 10y + z = 14$$
,

$$2x + 3y + 10z = 15$$

Date:-

ii) Solve the following system of equation by using Jacobi-Iteration method. (two iterations)

$$5x + 2y + z = 12$$
,

$$x + 4y + 2z = 15$$
,

$$x + 2y + 5z = 20$$

2) Solve the following system of equations by using Gauss elimination method.

$$x + 2y + 3z = 14$$
,

$$3x + y + 27 = 11$$

$$3x + y + 2z = 11$$
, $2x + 3y + z = 11$

3) Using Newton – Raphson method find the approximate root of the equation (use four iterations)

$$x2 + x - 5 = 0$$

4) Solve the following:

Find the root of the equation $\cos x - x e x = 0$ using the regular-falsi method. (carry out two iterations)

5) Solve the following system of equations by using Gauss Elimination method.

$$2x + 3y + z = 13$$
, $x - y - 2z = -1$, $3x + y + 4z = 15$.

5) Solve the following system of equations by using Gauss Seidal method.

$$20x + y - 2z = 17$$
; $3x + 20y - z = -18$; $2x - 3y + 20z = 25$.

- 6) Using Newton-Raphson method to find the approximate root of the equation x log10 x = 1.2. (carry out three iterations)
- 7) Solve the equation by Gauss Seidal method. (two iterations only)

$$10x + y + 2z = 13$$
,

$$3x + 10y + z = 14$$
,

$$2x + 3y + 10z = 15$$

8) Solve the following system of equation by using Jacobi-Iteration method. (two iterations)

$$5x + 2y + z = 12$$
,

$$x + 4y + 2z = 15$$
,

$$x + 2y + 5z = 20$$

9) Solve the following system of equations by using Gauss elimination method.

$$x + 2y + 3z = 14$$
, $3x + y + 2z = 2x + 3y + z = 11$

11,

$$x + 2y + 5z = 20$$

C

4. Solve the differential equation $\frac{dy}{dx} = e^{3x-2y} + x^2e^{-2y}$

5. Solve $\sec^2 x$.tanydx+ $\sec^2 y$.tanx=0 if $y = \frac{\pi}{4}$ when $x = \frac{\pi}{4}$

6. Solve the differential equation $\frac{dy}{dx} = (4x + y + 1)^2$

7. Solve the differential equation $\frac{dy}{dx} = \cos(x+y)$

8. Solve $(x^3 + y^3) \frac{dy}{dx} = x^2 y$

9. Solve $\frac{dy}{dx}$ +ycotx=cosecx.

10. Solve the differential equation (x+1) $\frac{dy}{dx}$ -y=e^x (1+x)²

Last date of Submission:-Name of course coordina