WINTER – 19EXAMINATION

Subject Name: Elements of Machine Design Model Answer Subject Code: 22564

Important Instructions to examiners:

- 1) The answers should be examined by key words and not as word-to-word as given in themodel answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may tryto assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given moreImportance (Not applicable for subject English and Communication Skills.
- 4) While assessing figures, examiner may give credit for principal components indicated in the figures. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constantvalues may vary and there may be some difference in the candidate's answers and model answer.
- 6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.

Q. No.	Sub Q. N		Marking Scheme
1.		Attempt any <u>FIVE</u> of the following	10 Marks
	a)	Define factor of safety for ductile and brittle material.	
	Ans	Factor of safety for ductile material: It is defined as ratio of yield stress to the working stress or	
		For Ductile Material, Factor of safety = $\frac{Yield\ stress}{working\ stress\ /\ Designstress}$	01 M
		Factor of safety for Brittle material: It is defined as ratio of ultimate stress to the working stress /permissible /design stress or	
		For Brittle material, Factor of safety = $\frac{Ultimate\ stress}{working\ stress\ /\ Designstress}$	01 M
	b)	List four properties desirable for spring material(Any Four)	
	Ans	1)High Resilience 2) High ductile	1/2 M each
		3)High static strength 4) High fatigue strength 5) Non corrosive	
	c)	List four applications of knuckle joints (Any Four)	
	Ans	1) Link of bicycle chain, 2) Tie bar of roof truss, 3) Link of suspension bridge 4) Valve mechanism, 5) Fulcrum of lever, 6) Joint for rail shifting mechanism	1/2 M each
	d)	Name four types of keys(Any Four)	
		1) Sunk keys 2) Gibb-head key 3)Feather key 4)Woodruff key 5)Saddle keys 6)Tangent keys 7)Round keys 8) Splines Key	1/2 M each
	e)	List any four application of power screw.	
	Ans	1) Machine Vice 2) power press 3) Universal testing machine 4) C clamps etc. OR 1)To raise the load 2) To clamp the work-piece 3) to load specimen 4)to obtain accurate motion	1/2 M each
	f)	Classify springs	

Page	No: /	N

Ans	1) Helical springs: Compression helical spring, Tension helical spring	1/2 M each
	2) Conical and volute springs	
	3) Torsion springs	
	4) Laminated or leaf springs	
	5)Disc or Belleville springs	
	6) Special purpose springs	
g)	Give four applications of gear drive. (Any Four)	
Ans	1) Gear box of vehicle 2)Machine tool 3)Gear mechanism of wrist watch	1/2 M each
7 1 1 1 1 5	4) Dial Indicator 5) Cement mixing unit 4) Diff. Mechanism of automobiles	1/2 1/1 cacii
	Attempt any THREE of the following	12 Marks
a)	Write the meaning of following material designation.	
Ans	1)40C8 : Plain carbon steel carbon 0.4% of average, manganese 0.8%	1 Mark eac
	2)SG 700/2 : spheroidal Graphite cast iron with Min UTS 700N/mm2 and elongation 0.2 %	
	3)Fe E200 : Steel with yield strength of 200N/mm2	
• `	4)X10Cr18Ni9: high alloy steel carbon 0.10% of average, chromium 18%, Nickel 9%,	
b)	Explain the failure of cotter in bending with suitable sketch and strength equation	
Ans	Bending failure of cotter:	
	Theoretically .It is assumed that the load is uniformly distributed over the various cross-sections of	
	the joint. But in actual practice, this does not happen and the cotter is subjected to bending. In order	
	to find out the bending stress induced, it is assumed that the load on the cotter in the rod end is uniformly distributed while in the socket end it varies from zero at the outer diameter ($d4$) and	
	maximum at the inner diameter $(d2)$, as shown in Fig.	
	maximum at the filler diameter (a2), as shown in Fig.	
	$a_4 - a_2$	
	$-d_2$	
	$P + \square$	
	$\stackrel{\leftarrow}{=} A \longrightarrow d_A A \longrightarrow 1/d_A - d_A$	
	2 - 1 ("4 ")	2 Marks fi
	$\frac{2}{b}$	2 Marks fi
	$ \begin{array}{c c} P \\ \hline 2 \\ P \\ \hline \end{array} $ $ \begin{array}{c c} b \\ \hline \end{array} $ $ \begin{array}{c c} d_4 \\ \hline \end{array} $ $ \begin{array}{c c} \frac{1}{3} \left(\frac{d_4 - d_2}{2} \right) \\ \hline \end{array} $	2 Marks fi
	$\frac{2}{P} \underbrace{\qquad \qquad \qquad }_{p} \underbrace{\qquad \qquad }_{p} \qquad \qquad $	2 Marks fi
	$\frac{2}{P} + \frac{1}{3} \left(\frac{44 + 42}{2}\right)$	2 Marks fi
	$\frac{2}{P} \underbrace{\qquad \qquad \qquad }_{b} \underbrace{\qquad \qquad }_{b} \underbrace{\qquad \qquad }_{1} \underbrace{\qquad \qquad }_{2} \underbrace{\qquad \qquad }_{2} \underbrace{\qquad \qquad }_{2}$	2 Marks fi
	$\frac{2}{P} + \frac{1}{3} \left(\frac{44 + 42}{2}\right)$	2 Marks fi
	$\frac{2}{P} + \frac{1}{3} \left(\frac{44}{2}\right)$	2 Marks fi
	$\frac{2}{P} + \frac{1}{3} \left(\frac{w_4 - w_2}{2} \right)$	2 Marks fi
	$\frac{2}{P}$ $\frac{1}{3}\left(\frac{44}{2}\right)$ $\frac{P}{2}$	2 Marks fi
	$\frac{2}{P} + \frac{1}{3} \left(\frac{w_4 - w_2}{2} \right)$	2 Marks fi
	$\frac{2}{P}$ $\frac{1}{3}\left(\frac{w_4 - w_2}{2}\right)$	2 Marks fi
	$\frac{2}{P}$ $\frac{1}{3} \left(\frac{4 + 2}{2} \right)$	2 Marks fi
	$\frac{2}{P}$ $\frac{1}{3}\left(\frac{44}{2}\right)$	2 Marks fi
	$\frac{2}{P}$ $\frac{P}{2}$ $\frac{1}{3}\left(\frac{4}{2}\right)$	2 Marks fi
	$\frac{2}{P}$ $\frac{1}{3}\left(\frac{4}{2}\right)$	2 Marks fi
	$\frac{2}{P}$ $\frac{1}{3}\left(\frac{44}{2}\right)$	2 Marks fi
	$\frac{2}{P}$ $\frac{P}{2}$ $\frac{1}{3}\left(\frac{44}{2}\right)$	2 Marks fi

(100/1	EC - 270	o tunea)	
		The maximum bending moment occurs at the centre of the cotter and is given by	
		$M_{max} = \frac{P}{2} \left(\frac{1}{3} \times \frac{d_4 - d_2}{2} + \frac{d_2}{2} \right) - \frac{P}{2} \times \frac{d_2}{4}$	237.1
		$= \frac{P}{2} \left(\frac{d_4 - d_2}{6} + \frac{d_2}{2} - \frac{d_2}{4} \right) = \frac{P}{2} \left(\frac{d_4 - d_2}{6} + \frac{d_2}{4} \right)$	2 Marks
		We know that section modulus of the cotter,	
		$Z = t \times b^2 / 6$	
		∴ Bending stress induced in the cotter,	
		$\sigma_b = \frac{M_{max}}{Z} = \frac{\frac{P}{2} \left(\frac{d_4 - d_2}{6} + \frac{d_2}{4} \right)}{t \times b^2 / 6} = \frac{P (d_4 + 0.5 d_2)}{2 t \times b^2}$	
		This bending stress induced in the cotter should be less than the allowable bending stress of the cotter.	
	c)	Write Lewis equation for strength of gear tooth give meaning of each term	
	Ans	Lewis equation for strength of gear tooth: $W_T = 6w.b. Pc. Y = 6w.b.\pi m. y$ Where,	2 Marks for equation
		$W_T = Tangential load acting at the term,$	&
		6w = Beam strength of the tooth, b = Width of the gear face	2 Marks for
		Pc = Circular pitch	notations
		m = Module Y = Lewis form factor or tooth form factor.	
	d)	Draw freehand sketches of thread profiles (any four) with full details	
	Ans	p → p/2 30°	
		p/2 T	1 Marks for each type
		(a) Square threads 0.3707p (b) Trapezoidal threads	.J.
		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
3.		(c) Acme threads (d) Buttress thread Attempt any THREE of the following:	12marks
<i>J.</i>			12main
	a)	Explain maximum principal stress theory and maximum shear stress theory with their uses.	
	Ans	1. Maximum Principal (Normal) Stress Theory (Rankine's Theory):	
		According to this theory, the failure or yielding occurs at a point in a member when the maximum principal (Normal) stress in a bi-axial stress system reaches the limiting strength of the material in a simple tension test.	
	i .		1

	Since, for ductile material the limiting strength is the stress at yield point & for brittle material the limiting strength is the ultimate stress.	
	:. According to the above theory, taking FOS into consideration,	
	The maximum principal (Normal) stress (σ_{t1}) in a bi-axial stress system is given by,	2 marks
	$\sigma_{t1} = \frac{\sigma_{yt}}{FOS}$ for ductile material	
	$\sigma_{t1} = \frac{\sigma_{ut}}{FOS}$ for brittle material	
	Application:	
	Designing of machine components of brittle material. Examples:	
	Spindle of screw jack, machine bed, C-frame, Overhang crank.	
	2. <u>Maximum Shear Stress Theory (Guest's or Tresca's Theory):</u> According to this theory, the failure or yielding occurs at a point in a member when the maximum	
	Shear Stress in a bi-axial stress system reaches a value equal to shear stress at yield point in a simple	
	tension test.	
	∴ According to the above theory, taking FOS into consideration,	
	The maximum principal (Normal) stress (σ_{t1}) in a bi-axial stress system is given by,	
	$\tau_{max} = \frac{\tau_{yt}}{FOS}$	
	Since, the shear stress at yield point in a simple tension test is equal to one-half the yield stress in tension.	2 marks
	$\tau_{max} = \frac{\sigma_{yt}}{2 \times FOS}$	
	Application:	
	Designing of machine components of ductile material.	
	Examples: Spring, key, crank shaft, propeller shaft.	
b)	Write general design procedure of the bell crank lever. (any four steps)	
Ans	P	
	[P.	
	<u> </u>	

rtified)

1. Find the effort (P) required to raise the load (W),

Taking moment about the fulcrum F, we have,

$$W X l_w = (P) X l_p$$

2. Find reaction at fulcrum pin at F,

$$R_F = \sqrt{W^2 + P^2}$$

Find:

3. Design of fulcrum pin:

i. Fulcrum pin is designed by considering under bearing pressure,

$$P_b = \frac{R_F}{l_f \cdot d_f}$$

where, $l_p = \text{length of fulcrum pin.}$

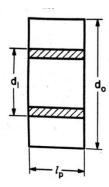
 d_p = diameter of fulcrum pin.

Find : l_p , d_p .

ii. Fulcrum pin is subjected to double shear,

$$\tau = \frac{R_F}{2A} = \frac{R_F}{2 \cdot \frac{\pi}{4} \, d_p^2}$$

Find: τ Check the shear stress induced in the fulcrum pin.


4. Diameter of boss of lever:

The boss of the lever is subjected to bending stress due to bending moment of lever.

Let,

 d_i = inner diameter of the boss of the lever/ diameter of hole in lever.

 d_0 = outer diameter of the boss of the lever/ diameter of boss at fulcrum.

A brass bush of 3 mm thickness is pressed into the boss of the fulcrum as a bearing so that renewal become simple when wear occurs.

1 marks for any four steps each rtified)

$$d_i = d_p + 2 \times 3$$

$$d_i = d_p \dots (if \ bush \ is \ not \ used)$$

$$d_i = 2 \times d_p$$

$$B.M. = M = W \times l_w = P \times l_p$$

$$Z = \frac{I}{y} = \frac{l_p(d_o^3 - d_i^3)/12}{d_o/2}$$

$$\therefore \sigma_b = \frac{M}{Z}$$

Check the σ_b induced in the lever arm at the fulcrum.

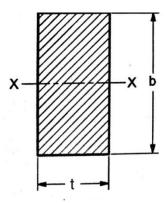
5. Design of lever to find dimensions:

The lever is subjected to B.M.,

The maximum B.M. acts near the boss,

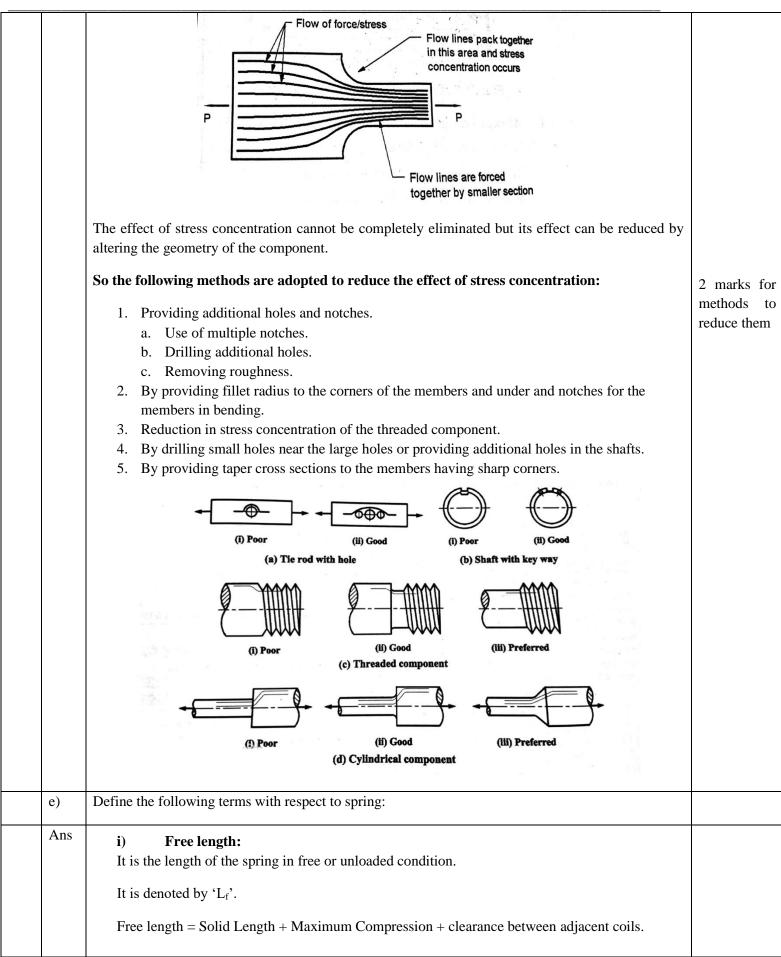
$$M = P \times \left[l_P - \frac{d_o}{2} \right] or = W \times \left[l_w - \frac{d_o}{2} \right]$$

$$\therefore \sigma_b = \frac{M}{Z}$$


i. Consider rectangular cross-section of the lever,

$$Z = \frac{I}{y} = \frac{\frac{tb^3}{12}}{\frac{b}{2}} = \frac{tb^2}{6}$$
 (b = 3t)

where,


b = depth of the lever.

t =thickness of the lever.

ii. For elliptical section,

(180/11		o rtified)	
		$Z = \frac{I}{y} = \frac{\pi t b^3}{\frac{64}{2}} = \frac{\pi t b^2}{32}$ where, $t = \text{minor axis of ellipse.}$ $b = \text{major axis of ellipse.}$	
	c)	State any four applications of spring.	
	Ans	Applications of spring: (Any Four)	
		 In automobile suspension. In railway suspension. In shot blasting machine. In clocks and toys to store energy. In spring balance and engine indicator to measure force. In clutch, brakes, spring loaded valves, etc. 	1 mark for one applica- tion any four each
	d)	Define stress concentration. Explain any four methods to reduce it with neat sketch.	
	Ans		
		Stress Concentration: Whenever the machine component changes the shape of its cross section the stress distribution pattern no longer holds good and the neighborhood of the discontinuity is different. The stresses induced in the neighborhood are much higher than the stress induced in the other part of the component. This abrupt change in cross section or the discontinuity form is called stress concentration. It is for all kinds of stresses caused due to keyways, grooves, notches, roughness or scratches.	Fordefinition 2 marks for stress concentration

$$= n'd + \delta_{max} + (n'-1) \times 1mm.$$

The clearance between two adjacent coils is taken as 1mm sometimes it is taken as 15% of the maximum deflection.

ii) Solid length:

When the compression spring is compressed until the coil comes in contact or touches each other, then the spring is said to be in solid condition. This length of spring is known as solid length.

1 Mark for each term

It is denoted by 'Ls'.

Solid length =
$$L_s = n'd$$

where n' = total number of coils or turns.

d = diameter of wire in mm.

iii) Spring index:

It is defined as the ratio of mean diameter of coil to the diameter of wire.

It is denoted by 'C'.

Spring index =
$$C = \frac{D_m}{d}$$

Where, $D_m = Mean diameter of coil in mm.$

d = wire diameter in mm.

iv) Spring rate:

The spring rate/ spring stiffness is defined the load required per unit deflection of the wire.

It is denoted by 'K'.

Spring rate/ Spring Stiffness = $K = \frac{w}{\delta} = \frac{w}{\delta}$ (N/mm)

where W = axial load in N.

 δ = maximum deflection in mm

Q.4 Attempt any <u>TWO</u> of the following:

12 marks

a)	Explain importance of shape and size in aesthetic design.	
Ans	The aesthetic characteristics is a very important for all design elements.	
	The aesthetics is the property to have good performance along with the better appearance for the satisfaction of the customer. In the buyer's market, have a number of products with same identical parameters, but the appearance of the of the product plays a major role in attracting the customers.	
	The aesthetic has a produce with the extent which contributes varies from product to product.	
	This is important for the designer to have develop the shape of a product so that customer get attracted towards it and the appearance should be pleasing.	
	For example the cars are designed in the form of aerodynamic shape, this aesthetic forms helps in the performance by getting less resistance of air as well as the appearance which extent in contribution.	6 marks
	The shape is also the important aesthetic criteria that the products develops and designed should not be bulky in size which will affect the performance as well as the appearance of the product. The designer thus have the choice to minimize the shape and can form smaller size product designs rather than bulky designs.	
	Thus, aesthetics helps to get the better appearance and performance which extent its contributions from product to product.	
b)	The pull in the tie rod of a roof truss is 44 kN. Design a suitable adjustable screw joint. The permissible tensile and shear stresses are 75 MPa and 37.5 MPa respectively.	6 marks
Ans	Let,	
	d_c = core diameter of tie rod.	
	d = do = nominal (maximum) diameter of tie rod	
	D = Outside diameter of coupler nut.	
	l = Length of coupler nut.	
	D_1 = Inside diameter of coupler.	
	D_2 = Outside diameter of coupler.	
	L = Total length of coupler = 0.6 d	

Page No: ____/ N

Given,
$$\beta = 44 \times 10^3 \text{ N}$$
 $G_t = 75 \text{ N/mm}^{-1}$
 $\gamma = 37.5 \text{ N/mm}^{-1}$
 $G_c = 90 \text{ N/mm}^{-1}$
 $G_c = 90 \text{ N/mm}^{-1}$

We know that, for threaded Component

 $G_s = 1.3 \times P = 1.3 \times 44 \times 10^3 = 57.2 \times 10^3 \text{ N}$

Here we use turnbuckle as a adjustable screw joint.

 $G_t = \frac{P_d}{A} = \frac{P_d}{\frac{\pi}{4}J_c^{-1}}$
 $G_t = \frac{P_d}{A} = \frac{P_d}{\frac{\pi}{4}J_c^{-1}}$
 $G_t = 31.16 \text{ mm} \approx 32 \text{ mm}$
 $G_t = 31.16 \text{ mm} \approx 32 \text{ mm}$
 $G_t = 0.84 \quad G_t = 38.095 \text{ mm} \approx 40 \text{ mm}$
 $G_t = 12.138 \text{ mm}$

But $G_t = 1.25 \text{ J} = 50 \text{ mm}$
 $G_t = \frac{P_d}{A} = \frac{1.3 \times P}{A} = \frac{1.3 \times P$

	iv) Outside diameter of coupler (D2):-	
	$\delta_{\underline{\ell}} = \frac{\rho}{A} = \frac{\rho}{\frac{\pi}{4} (\mathfrak{I}_{2}^{2} - \mathfrak{I}_{1}^{2})}$	
	But, D, = 1 + 6 = 40 + 6 = 46 mm	
	$\frac{75}{\sqrt{4}(2^{2}-46^{2})}$	
	$D_2 = 53.5 \text{ mm} = 54 \text{ mm}$	
	But, $D_2 = 1.5 J = 1.5 \times 40 = 60 mm$	
	V) Length of coupler Nut = L = 6.d = 240 mm	
	vi) Thickness of coupler = t = 0.75 d = 30 mm	
	Vii) Thickness of coupler nut = t, = 0.5 d = 20 mm	
c)	A Lathe receives power from an overhung shaft situated exactly above the lathe pulley by means of the belt drive. A pulley weighing 400 N and of diameter 270 mm is fixed on the shaft. The centre to centre distance between the two shaft supporting bearing is 900 mm. the maximum power required	6 marks

by machine is 5 kW at 200 rpm. The belt tension ratio is 2.5. Determine the diameter of the shaft.

Allowable shear stress for shaft material is 40 N/mm².

Page No: ____/ N

$$P = 5 \times 10^{3} \text{ Watt}$$

$$N = 200 \text{ Tpm}$$

$$W_{P} = 400 \text{ N}$$

$$D = 270 \text{ mm}$$

$$T_{T} = 2.5$$

$$Y = 40 \text{ N/mm}^{2}$$

$$T = 238.732 \times 10^{3} \text{ Nmm}$$

$$T = 238.732 \times 10^{3} \text{ Nmm}$$

$$T_{T} = 2.5 \times T_{T}$$

$$T = (T_{T} - T_{T}) \times R$$

$$238.732 \times 10^{3} = (2.5 T_{T} - T_{T}) \times \frac{270}{12}$$

$$T_{T} = 1178.92 \text{ N} \text{ Set } T_{T} = 2947.31 \text{ N}$$

$$Now, To bell weight = W_{T} = W_{F} + T_{T} + T_{T}$$

$$= 400 + 1178.92 + 1947.31$$

$$W_{T} = 4526.23 \text{ N}$$

$$R_{R_{T}} = R_{R_{T}}$$

EC - 270	· · · · · · · · · · · · · · · · · · ·	
	$\sum F_{g} = 0 \qquad R_{A} + R_{B} = 4526.233 N$ $\sum M_{B} = 0 \qquad -(W_{T} \times 300) + R_{B} \times 900 = 0$ $R_{B} = 1508.744 N \qquad R_{A} = 3017.48 N$ $N_{PW} find \qquad Moments at A, B R_{C} = 0$ $M_{C} = R_{B} \times 600 = 905.24 \times 10^{3} N.mm$ $M_{B} = 0$ $M_{C} = \frac{1}{16} \times 40 \times d^{3} = \sqrt{m^{2} + 7^{2}}$ $\frac{T}{16} \times 40 \times d^{3} = \sqrt{(905.24 \times 10^{3})^{2} + (238.73 \times 10^{3})^{2}}$ $1 = 49.21 m^{2}$	
	· · d - 30	
	Attempt any TWO of the following	12 Marks
a)	A flanged protective type coupling is required to transmit 7.5 KW at 720 rpm. Assume the following stresses for the coupling components. Permissible shear stress for shaft, bolt & key material = 33 N/mm². Permissible crushing stress for bolt & key material = 60 N/mm². Find: (i) Diameter of shaft (ii) Diameter of key (iii) Diameter of bolt	
Ans	P = 7.5 KW	
	N= 720rpm $T = 33 \text{ N/mm}^2$ $G = 60 \text{ N/mm}^2$ Step 1)Find Torque $P = \frac{2\pi NT}{60}$	
	a)	$ \Xi F_{g} = 0 \qquad \therefore R_{\beta} + R_{g} = 45226. \ 233 N $ $ \Xi M_{\beta} = 0 \qquad \qquad -(M_{7} \times 300) + R_{g} \times 900 = 0 $ $ \therefore R_{\beta} = 1508.74 + N \qquad \& R_{\beta} = 3017.48 N $ $ N_{FW} \qquad \text{find} \qquad \text{Moments} \text{at} A_{,} B_{,} \&_{,} C_{,} C_{$

$$T = \frac{7.5 \times 10^3 \times 60}{2 \times \pi \times 720}$$

 $T = 99.47 \text{N.m} = 99.47 \times 10^3 \text{N.mm}$

Step 2) We also know that

$$T = \frac{\pi}{16} \times \tau \times d^3$$

99.47× 10³N.mm=
$$\frac{\pi}{16}$$
 × 33 × d^3

$$d^3 = 15351.41d = 24.85 \text{ mm} = 25 \text{mm}$$

Step 3)Design of hub

Outer diameter of hub

$$D = 2d = 2 \times 25 = 50 \text{ mm}$$

Length of hub, $L=1.5d=1.5 \times 25=37.5$ mm

Let, now check induced shear stress

$$T = \frac{\pi}{16} \times \tau c \times \frac{[D^4 - d^4]}{D}$$

$$99.47 \times 10^{3} = \frac{\pi}{16} \times \tau c \times \frac{[50^{4} - 25^{4}]}{50}$$

$$\tau c = 4.32 \, N/mm2$$

Since induced shear stress is less than permissible value 33N/mm2 the design is safe

Step 4)Design of key, here Rectangle key is used

from table W=10mm

Length of key is taken as length of the hub = L = 37.5mm

Let us now check induced stresses

$$T = I \times w \times T \times \frac{d}{2}$$

99.47×
$$10^3$$
 = 37.5× $10 \times 7 \times \frac{25}{2}$

 $T = 21.22 \le 33 \text{N/mm}^2$

$$99.47 \times 10^3 = 1 \times \frac{t}{2} \times \sigma_{ck} \times \frac{25}{2}$$

$$99.47 \times 10^3 = 37.5 \times \frac{8}{2} \times \sigma_{ck} \times \frac{25}{2}$$

$$\sigma_{ck}$$
 = 53.05≤ 60N/mm²

Design is safe.

Step 5) Design for flange

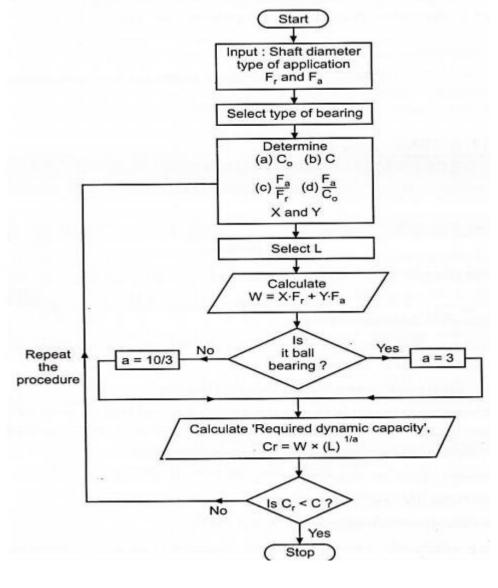
(150/1	EC - 270	out and the second of the seco	
		t _f = 0.5 d = 0.5 ×25= 12.5mm	
		Now, check induced shear stress in flange	
		$T = \frac{\pi D^2}{2} \times \tau \times tf$	
		$99.47 \times 10^{3} = \frac{\pi 25^{2}}{2} \times \tau \times 12.5$	
		τ= 8.10 N/mm ²	
		Flange is safe.	
		Step 6) Design for bolts	
		Number of bolts is n = 3	
		D ₁ = 3d= 3 × 25=75mm	
		Bolts are subjected to shear stress	
		$T = \frac{\pi}{4} \times d1^2 \times tb \times n \times \frac{D1}{2}$	
		$99.47 \times 10^{3} = \frac{\pi}{4} \times d1^{2} \times 33 \times 3 \times \frac{75}{2}$	
		$d 1^2 = \frac{99.47 \times 103}{2915.79}$	
		$d 1^2 = 34.11$	
		d1=5.84mm	
		Assume coarse thread nearest to standard diameter M6	
		step 7) Outer diameter of the flange, D_2 = 4d= 4×25 = 100mm	
		Step 8) Thickness of protective circumferential flange, tp= 0.25d = 0.25×25 = 6.25mm	
	b)	The lead screw of lathe has ACME thread of 60 mm outside diameter & 8 mm pitch. It supplies drive to a tool carriage which need an axial force of 2000 N. A collar bearing with inner & outer radius as 30 mm & 60 mm respectively is provided. The coefficient of friction for the screw thread is 0.12 & collar is 0.10. Find the torque required to drive the screw & the efficiency of the screw.	
	Ans	d ₀ = 60mm	
		W= 2000N	
		D ₂ = 30mm	
		D ₁ = 60mm	
		p = 8mm	
		μ =0.12	
		$\mu_2 = 0.10$	
		To Find	

BOARD OF TECHNICAL EDUCATION MAHARASHT (Autonomous) (ISO/IEC - 2700 rtified) **n** =? Step 1) Mean diameter of screw $d = d_0 - \frac{p}{2} = 60 - \frac{8}{2} = 56$ mm $\tan\alpha = \frac{p}{\pi d} = \frac{8}{\pi \times 56}$ $tan\alpha = 0.045$ angle for ACME thread $2\beta=29^{\circ}\beta=14.5^{\circ}$ $\mu 1 = tan \emptyset 1 = \frac{\mu}{cos \beta}$ $\mu 1 = tan \emptyset 1 = \frac{\mu 0.12}{cos 14.5}$ µ1 = tan 0 1=0.1239 Step 2) Torque required to overcome friction of screw $T_1 = W \frac{\tan \alpha + \tan \emptyset 1}{1 - \tan \alpha \cdot \tan \emptyset 1} \times d/2$ $T1 = 2000 \times \frac{0.045 + 0.1239}{1 - 0.045, 0.1239} \times 56/2$ T1= 9576N.mm Step 3) Assuming uniform wear to overcome collar friction $R = \frac{R1 + R2}{2} =$ $R = \frac{30+60}{2} = 45 \text{mm}$ $T_2 = \mu \times W \times R = 0.10 \times 2000 \times 45 = 9000 N.mm$ T = T1 + T2 = 9576 + 9000 = 18576 N.mmStep 4) $\eta = \frac{T0}{T} = \frac{W \tan \alpha \times \frac{d}{2}}{T}$ $\eta = \frac{T0}{T} = \frac{2000 \times tan\alpha \times \frac{56}{2}}{18576}$ η=0.1371=13.71% State the steps involved in selection of proper ball bearing from manufacturer's catalogue. c)

1) Calculate radial and axial forces and determine dia. of shaft.

3) Start with extra light series for given diagram go by trial of error method4) Find value of basic static capacity (co) of selected bearing from catalogue.

2) Select proper type of bearing.


5) Calculate ratios Fa/VFr and Fa/Co.

Ans

- 6) Calculate values of radial and thrust factors.(X & Y) from catalogue.
- 7) For given application find value of load factor Ka from catalogue.
- 8) Calculate equivalent dynamic load using relation. Pe = (XVFr + YFA) Ka.
- 9) Decide expected life of bearing considering application. Express life in million revolutions L10
- 10) Calculate required basic dynamic capacity for bearing by relation.
- 11) Check whether selected bearing has req. dynamic capacity, IF it not select the bearing of next series and repeat procedure from step-4

OR

OR (flowchart)

6.		Attempt any TWO of the following	12 Marks
	a)	A plate 75 mm wide & 12.5 mm thick is to be joined with another plate by single transverse & parallel fillet weld. Maximum tensile & shear stresses are 70 N/mm ² & 56 N/mm ² respectively. Find the length of each parallel fillet weld if joint is subjected to 90 KN.	
	Ans	Given data	

$ \begin{array}{c} W=75 \text{KN} \\ t=12.5 \text{mm} \\ t=56 \text{ N/mm}^2 \\ o t=70 \text{ N/mm}^3 \\ P=90 \times 10^3 \text{N/mm}^2 \\ \hline \\ \text{Step 1) Load carried by single transverse} \\ P_1=0.707 \times 5 \times 1, \times \sigma t \\ P_1=0.707 \times 12.5 \times 62.5 \times 70 \\ \hline \\ P_1=38664.06 \text{ N} \\ \hline \\ \text{Step 2) Double parallel fillet weld} \\ P_2=1.414 \times 5 \times 1 \times T \\ \hline \\ P_2=1.414 \times 12.5 \times 1, \times 56 \\ \hline \\ P_2=989.8 \times 1_2 \\ \hline \\ \text{Step 3) Pe P_1 + P_2} \\ 90 \times 10^3 = 38664.06 + 989.8 \times 1_2 \\ \hline \\ 1_2=51.86 \text{mm} \\ \hline \\ \text{b} \\ \hline \\ \text{b} \\ \hline \\ \text{D} \\ \hline \\ \text{Ans} \\ \hline \\ \text{W} = 1000 \text{M} \\ \sigma = 25 \text{mm} \\ \hline \\ \sigma = 26 - 0.6 \\ \hline \\ \tau = 420 \text{ mm} \\ \hline \\ \text{G} = 84 \times 10^3 \text{ N/mm}^2 \\ \hline \\ \text{Step 1) Mean diameter of spring coil} \\ \hline \\ \text{Ke} \\ \frac{4c-1}{4c+4} \frac{9.615}{4c-4} \\ \text{Ke} \\ \frac{4c-4}{4c-4} \frac{4655}{4c-4} \\ \text{Ke} \\ \text{C} \\ \frac{4x5-4}{4x5-4} + \frac{4655}{4x5-4} \\ \text{Ke} \\ \text{C} \\ 1.31 \\ \hline \\ \text{Step 2) Maximum shear stress} \\ \hline \\ \text{420} = \text{K} \\ \hline \\ \frac{(8\times 1000 \times 5)}{\pi d^2} = 1.31 \times \frac{(8\times 1000 \times 5)}{\pi d^2} \\ \hline \end{array} $	(ISO/IEC -	2700 rtified)	
		W= 75KN	
$\begin{array}{c} \text{ ot } = 70 \text{ N/mm}^2 \\ \text{ P= } 90 \times 10^3 \text{ N/mm}^2 \\ \text{ Step 1) Load carried by single transverse} \\ P_1 = 0.707 \times 5 \times 1_1 \times \text{ ot } \\ P_2 = 0.707 \times 5 \times 1_2 \times \text{ ot } \\ P_3 = 38664.06 \text{ N} \\ \text{ Step 2) Double parallel fillet weld} \\ P_2 = 1.414 \times 5 \times 1_2 \times T \\ P_2 = 1.414 \times 12.5 \times 1_2 \times 56 \\ P_2 = 989.8 \times 1_2 \\ \text{ Step 3) P= P_1 + P_2} \\ 90 \times 10^3 = 38664.06 + 989.8 \times 1_2 \\ I_2 = 51.86 \text{ mm} \\ I_2 = 51.86 \text{ mm} \\ I_3 = 51.86 \text{ mm} \\ I_4 = 51.86 + 12.5 \\ I_2 = 64.36 \text{ mm} \\ I_5 = 51.86 \text{ mm} \\ I_6 = 32 \text{ mm} \\ I_7 = 420 \text{ mm} \\ I_8 = 420 $		t = 12.5mm	
$\begin{array}{c} \text{Step 1) Load carried by single transverse} \\ P_1=0.707\times s\times _1\times \sigma t \\ P_2=0.707\times s\times _2\times \sigma t \\ P_3=0.707\times 12.5\times 62.5\times 70 \dots (_1=75\cdot12.5=62.5) \\ P_2=38664.06 \text{ N} \\ \text{Step 2) Double parallel fillet weld} \\ P_2=1.414\times 5\times _2\times \tau t \\ P_2=1.414\times 12.5\times _2\times 56 \\ P_2=989.8\times _2 \\ \text{Step 3) } P=P_1+P_2 \\ 90\times 10^3=38664.06+989.8\times _2 \\ \text{I}_2=51.86\text{mm} \\ 1 _2=51.86\text{mm} \\ 1 _2=51.86+12.5 \\ 1 _2=64.36\text{ mm} \\ \text{b} \\ \text{Mns} \\ & C=\frac{Q}{d}=0.6 \\ \tau=420\text{ mm} \\ & G=84\times 10^3 \text{ N/mm}^2 \\ \text{Step 1) Mean diameter of spring coil} \\ & K=\frac{4C-t}{4C-4}+\frac{8.615}{4C-4} \\ & K=\frac{4C-t}{4\times 5-4}+\frac{0.615}{4\times 5-4} \\ & K=1.31 \\ \text{Step 2) Maximum shear stress} \\ \end{array}$		T= 56 N/mm ²	
$ \begin{array}{c} \textbf{Step 1) Load carried by single transverse} \\ P_1=0.707\times s \times I_1 \times \sigma t \\ P_2=0.707\times s \times I_2 \times \sigma t \times 0.000000000000000000000000000000000$		σ t =70 N/mm²	
$\begin{array}{c} P_1 = 0.707 \times s \times l_1 \times \text{ot} \\ P_1 = 0.707 \times 12.5 \times 62.5 \times 70 & \dots & (l_1 = 75 - 12.5 = 62.5) \\ P_1 = 38664.06 \text{ N} & \text{Step 2) Double parallel fillet weld} \\ P_2 = 1.414 \times 5 \times l_2 \times T & 2 \text{ Marks} \\ P_2 = 1.414 \times 12.5 \times l_2 \times 56 & 2 \text{ Marks} \\ P_2 = 989.8 \times l_2 & 2 \text{ Step 3) Pe P}_1 + P_2 & 90 \times 10^3 = 38664.06 + 989.8 \times l_2 \\ l_2 = 51.86 \text{mm} & l_2 = 51.86 \text{mm} & 2 \text{ Marks} \\ & b) & & \\ \hline & \text{Ans} & & \\ & &$		P= 90×10 ³ N/mm ²	
$\begin{array}{c} P_1 = 0.707 \times s \times l_1 \times \sigma \ t \\ P_1 = 0.707 \times 12.5 \times 62.5 \times 70 & \dots & (l_1 = 75 \cdot 12.5 = 62.5) \\ P_1 = 38664.06 \ N & \\ \textbf{Step 2) Double parallel fillet weld} & \\ P_2 = 1.414 \times 5 \times l_2 \times T & \\ P_2 = 1.414 \times 12.5 \times l_2 \times 56 & \\ P_2 = 989.8 \times l_2 & \\ \textbf{Step 3) P = P_1 + P_2} & \\ 90 \times 10^3 = 38664.06 + 989.8 \times l_2 & \\ l_2 = 51.86 \text{mm} & \\ l_2 = 51.86 + 12.5 & \\ l_2 = 64.36 \ \text{mm} & \\ \textbf{b)} & \\ \textbf{Ans} & \\ & \\ \textbf{M} = 1000N & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & $			
$P_{1}=0.707 \times 12.5 \times 62.5 \times 70 \qquad (I_{1}=75-12.5=62.5)$ $P_{1}=38664.06 N$ $Step 2) Double parallel fillet weld$ $P_{2}=1.414 \times 5 \times I_{2} \times T$ $P_{2}=1.414 \times 12.5 \times I_{2} \times 56$ $P_{3}=989.8 \times I_{2}$ $Step 3) P= P_{1}+P_{2}$ $90 \times 10^{3}=38664.06+989.8 \times I_{2}$ $I_{2}=51.86mm$ $I_{2}=51.86+12.5$ $I_{2}=64.36 mm$ b) Ans $W=1000N$ $\delta=25mm$ $c=\frac{D}{d}=0.6$ $\tau=420 mm$ $G=84 \times 10^{3} N/mm^{2}$ $Step 1) Mean diameter of spring coil$ $K=\frac{4C-1}{4C-4} + \frac{0.615}{4C-4} + \frac{4C-1}{4C-4}$ $K=\frac{4X5-1}{4X5-4} + \frac{0.615}{4x5-4}$ $K=1.31$ $Step 2) Maximum shear stress$		Step 1) Load carried by single transverse	
$\begin{array}{c} P_1 = 0.707 \times 12.5 \times 62.5 \times 70 &$		$P_1 = 0.707 \times s \times I_1 \times \sigma t$	2 Marks
Step 2) Double parallel fillet weld $P_{2}=1.414 \times 5 \times I_{2} \times T$ $P_{2}=1.414 \times 12.5 \times I_{2} \times 56$ $P_{2}=989.8 \times I_{2}$ Step 3) $P=P_{1}+P_{2}$ $90 \times 10^{3}=38664.06+989.8 \times I_{2}$ $I_{2}=51.86mm$ $I_{2}=51.86+12.5$ $I_{2}=64.36 mm$ b) Ans $W=1000N$ $\delta=25mm$ $C=\frac{P}{d}=0.6$ $\tau=420 mm$ $G=84 \times 10^{3} \text{ N/mm}^{2}$ Step 1) Mean diameter of spring coil $K=\frac{4C-1}{4C-4}+\frac{0.615}{4C-4}$ $K=\frac{4C-1}{4 \times 5-4}+\frac{0.615}{4 \times 5-4}$ $K=1.31$ Step 2) Maximum shear stress		P ₁ = 0.707 × 12.5 × 62.5×70(I ₁ =75-12.5 =62.5)	2 IVIUI IIS
$\begin{array}{c} P_2 = 1.414 \times S \times _2 \times T \\ P_2 = 1.414 \times 12.5 \times _2 \times 56 \\ P_2 = 989.8 \times _2 \\ \\ \textbf{Step 3) Pe P_1 + P_2} \\ 90 \times 10^3 = 38664.06 + 989.8 \times _2 \\ I_2 = 51.86 \text{mm} \\ I_2 = 51.86 + 12.5 \\ I_2 = 64.36 \text{ mm} \\ \\ \textbf{b)} \\ \textbf{Ans} \begin{array}{c} W = 1000N \\ \delta = 25 \text{mm} \\ C = \frac{D}{d} = 0.6 \\ T = 420 \text{ mm} \\ G = 84 \times 10^3 \text{ N/mm}^2 \\ \\ \textbf{Step 1) } \text{ Mean diameter of spring coil} \\ K = \frac{4C - 1}{4C - 4} + \frac{0.615}{4C - 4} \\ K = \frac{4K - 1}{4 \times 5 - 4} + \frac{0.615}{4 \times 5 - 4} \\ K = 1.31 \\ \textbf{Step 2) } \text{ Maximum shear stress} \\ \end{array}$		P ₁ = 38664.06 N	
$P_{2}=1.414 \times 12.5 \times l_{2} \times 56$ $P_{2}=989.8 \times l_{2}$ $Step 3) P= P_{1} + P_{2}$ $90 \times 10^{3} = 38664.06 + 989.8 \times l_{2}$ $l_{2}=51.86mm$ $2 Marks$ $l_{2}=51.86+12.5$ $l_{2}=64.36 mm$ $b) Ans W=1000N$ $\delta = 25mm$ $C = \frac{D}{d} = 0.6$ $T = 420 mm$ $G=84 \times 10^{3} \text{ N/mm}^{2}$ $Step 1) Mean diameter of spring coil$ $K = \frac{4C-1}{4C-4} + \frac{0.615}{4C-4}$ $K = \frac{4\times 5-1}{4\times 5-4} + \frac{0.615}{4\times 5-4}$ $K = 1.31$ $Step 2) Maximum shear stress$		Step 2) Double parallel fillet weld	
P ₂ = 1.414 × 12.5 × I_2 × 56 P ₂ = 989.8 × I_2 Step 3) P= P ₁ + P ₂ 90 × 10 ³ = 38664.06 + 989.8 × I_2 I_2 = 51.86mm 2 Marks b) Ans W= 1000N $\delta = 25 \text{mm}$ $C = \frac{D}{d} = 0.6$ $\tau = 420 \text{ mm}$ $G = 84 \times 10^3 \text{ N/mm}^2$ Step 1) Mean diameter of spring coil $K = \frac{4C - 1}{4C - 4} + \frac{0.615}{4C - 4}$ $K = \frac{4K - 1}{4X - 5 - 4} + \frac{0.615}{4X - 5 - 4}$ K= 1.31 Step 2) Maximum shear stress		$P_2 = 1.414 \times S \times I_2 \times T$	235 1
Step 3) P= P ₁ + P ₂ $90 \times 10^{3} = 38664.06 + 989.8 \times I_{2}$ $I_{2} = 51.86mm$ $I_{2} = 51.86 + 12.5$ $I_{2} = 64.36 mm$ b) Ans $W = 1000N$ $\delta = 25mm$ $C = \frac{D}{d} = 0.6$ $\tau = 420 mm$ $G = 84 \times 10^{3} \text{ N/mm}^{2}$ Step 1) Mean diameter of spring coil $K = \frac{4C - 1}{4C - 4} + \frac{0.615}{4C - 4}$ $K = \frac{4 \times 5 - 1}{4 \times 5 - 4} + \frac{0.615}{4 \times 5 - 4}$ $K = 1.31$ Step 2) Maximum shear stress		$P_2 = 1.414 \times 12.5 \times I_2 \times 56$	2 Marks
$\begin{aligned} &90\times 10^3 = 38664.06 + 989.8\times I_2\\ &I_2 = 51.86mm\\ &I_2 = 51.86 + 12.5\\ &I_2 = 64.36 \text{ mm} \end{aligned}$ b) $\begin{vmatrix} \mathbf{Ans} & \mathbf{W} = 1000N\\ & & & \\ & $		P ₂ = 989.8 × I ₂	
$ l_2 = 51.86 mm $ $ l_2 = 51.86 + 12.5 $ $ l_2 = 64.36 mm $ $ b $		Step 3) P= P ₁ + P ₂	
$l_2 = 51.86 \text{ mm}$ $l_2 = 64.36 \text{ mm}$		$90 \times 10^3 = 38664.06 + 989.8 \times I_2$	
b) Ans W= 1000N $\delta = 25 \text{mm}$ $C = \frac{D}{d} = 0.6$ $\tau = 420 \text{ mm}$ $G=84 \times 10^3 \text{ N/mm}^2$ Step 1) Mean diameter of spring coil $K = \frac{4C-1}{4C-4} + \frac{0.615}{4C-4}$ $K = \frac{4X-1}{4X5-4} + \frac{0.615}{4X5-4}$ $K = 1.31$ Step 2) Maximum shear stress		I ₂ = 51.86mm	2 Marks
b) Ans $W=1000N$ $\delta = 25mm$ $C = \frac{D}{d} = 0.6$ $\tau = 420 \text{ mm}$ $G=84 \times 10^3 \text{ N/mm}^2$ Step 1) Mean diameter of spring coil $K = \frac{4C-1}{4C-4} + \frac{0.615}{4C-4}$ $K = \frac{4\times 5-1}{4\times 5-4} + \frac{0.615}{4\times 5-4}$ $K = 1.31$ Step 2) Maximum shear stress		I ₂ = 51.86+ 12.5	
Ans $W=1000N$ $\delta=25 \text{mm}$ $C=\frac{D}{d}=0.6$ $\tau=420 \text{ mm}$ $G=84 \times 10^3 \text{ N/mm}^2$ Step 1) Mean diameter of spring coil $K=\frac{4C-1}{4C-4} + \frac{0.615}{4C-4}$ $K=\frac{4\times 5-1}{4\times 5-4} + \frac{0.615}{4\times 5-4}$ $K=1.31$ Step 2) Maximum shear stress		I ₂ = 64.36 mm	
$\delta = 25 \text{mm}$ $C = \frac{D}{d} = 0.6$ $\tau = 420 \text{ mm}$ $G=84 \times 10^3 \text{ N/mm}^2$ $\text{Step 1) Mean diameter of spring coil}$ $K = \frac{4C-1}{4C-4} + \frac{0.615}{4C-4}$ $K = \frac{4\times 5-1}{4\times 5-4} + \frac{0.615}{4\times 5-4}$ $K = 1.31$ $\text{Step 2) Maximum shear stress}$	ŀ		
$C = \frac{D}{d} = 0.6$ $\tau = 420 \text{ mm}$ $G=84 \times 10^3 \text{ N/mm}^2$ $Step 1) \text{ Mean diameter of spring coil}$ $K = \frac{4C-1}{4C-4} + \frac{0.615}{4C-4}$ $K = \frac{4\times 5-1}{4\times 5-4} + \frac{0.615}{4\times 5-4}$ $K = 1.31$ $Step 2) \text{ Maximum shear stress}$	Aı	s W= 1000N	
$\tau = 420 \text{ mm}$ $G=84 \times 10^3 \text{ N/mm}^2$ $\text{Step 1) Mean diameter of spring coil}$ $K = \frac{4C-1}{4C-4} + \frac{0.615}{4C-4}$ $K = \frac{4\times 5-1}{4\times 5-4} + \frac{0.615}{4\times 5-4}$ $K = 1.31$ $\text{Step 2) Maximum shear stress}$			
G=84 × 10 ³ N/mm ² Step 1) Mean diameter of spring coil $K = \frac{4C-1}{4C-4} + \frac{0.615}{4C-4}$ $K = \frac{4\times 5-1}{4\times 5-4} + \frac{0.615}{4\times 5-4}$ $K = 1.31$ Step 2) Maximum shear stress		$C = \frac{b}{d} = 0.6$	
Step 1) Mean diameter of spring coil $K = \frac{4C-1}{4C-4} + \frac{0.615}{4C-4}$ $K = \frac{4\times 5-1}{4\times 5-4} + \frac{0.615}{4\times 5-4}$ $K = 1.31$ Step 2) Maximum shear stress			
$K = \frac{4C-1}{4C-4} + \frac{0.615}{4C-4}$ $K = \frac{4\times 5-1}{4\times 5-4} + \frac{0.615}{4\times 5-4}$ $K = 1.31$ Step 2) Maximum shear stress		$G=84 \times 10^3 \text{ N/mm}^2$	
$K = \frac{4 \times 5 - 1}{4 \times 5 - 4} + \frac{0.615}{4 \times 5 - 4}$ $K = 1.31$ $Step 2) Maximum shear stress$		Step 1) Mean diameter of spring coil	
$K = \frac{4 \times 5 - 1}{4 \times 5 - 4} + \frac{0.615}{4 \times 5 - 4}$ $K = 1.31$ $Step 2) Maximum shear stress$		$K = \frac{4C - 1}{4C - 4} + \frac{0.615}{4C - 4}$	
K= 1.31 Step 2) Maximum shear stress			
Step 2) Maximum shear stress			
$420 = K \frac{(8 \times W \times C)}{\pi d^2} = 1.31 \times \frac{(8 \times 1000 \times 5)}{\pi d^2}$			
10 00		$420 = K \frac{(8 \times W \times C)}{\pi d^2} = 1.31 \times \frac{(8 \times 1000 \times S)}{\pi d^2}$	
d = 6.3mm			

	Diameter of the pulley, D=1000mm K= d/D =0.6	
	$ heta=180^{\circ}$	
	$w_{t} = 500N$ $\tau = 65MPa$	
	$T_2 = 1 \times 10^3 \text{ N}$	
	$T_1 = 3 \times 10^3 \text{N}$	
	d = 0.6 D	
Ans	Given data	
c)	A hollow transmission shaft having inside diameter 0.6 times outside diameter, is made up of plain carbon steel 40C8 & having permissible shear stress equal to 65 MPa. A belt pulley, 1000 mm in diameter is mounted on a shaft, which overhangs the left hand bearing by 250 mm. The belt are vertical power transmit to the machine shaft below the pulley. The tension on tight & slack side of belt are 3 kN& 1 kN respectively, while weight of pulley is 500 N. The angle of rap of the belt on pulley is 180°. Calculate outside & inside diameter of shaft.	
	$=\frac{free\ length}{n'-1} = \frac{131.2}{16-1} = 8.76\ mm$	
	Step 6) Pitch of the coil	
	Step 5) Free length $L_f = n'd + \delta + 0.15 \times \delta = 16 \times 6.401 + 25 + 0.15 \times 25 = 131.2 \text{ mm}$	
	n'= n+2 = 14+2 = 16 Stop 5) Free length	
	Step 4) for square and ground ends	
	<i>n</i> = 13.44=14	
	1.86	
	$n = \frac{25}{}$	
	$25 = \frac{8 \times 1000 \times 5^3 n}{84 \times 10^3 \times 6.401}$	
	G.d	
	$\delta = \frac{8WC^3n}{c}$	
	Step 3) number of turns of the coil	
	D ₀ = D+d=32.005 + 6.401= 38.406 mm	
	Outer diameter of spring	
	$D = C \times d = 5 \times 6.401 = 32.005$	
	From table take d = 6.401 or same value also considered	

$T = (T1-T2)R = (3000-1000) \times 500 = 1 \times 10^6 N.mm$	
Total weight on the pulley	02 Marks
W _t = T1 + T2 + W= 3000+1000+500= 4500 N	
Step 2) Bending moment	02 Marks
$M = W_t \times 250 = 4500 \times 250 = 1.125 \times 10^6 \text{ N.mm}$	
Step 3) Find equivalent twisting moment	
$T_{eq} = \sqrt{M^2 + T^2} = \sqrt{(1.125 \times 10^6)^2 + (1 \times 10^6)^2} = 1.50 \times 10^6 \text{ N.mm}$	
$T_{eq} = \frac{\pi}{16} \times \tau \times d_0^3 \times (1 - K^4)$	
$1.56 \times 10^{6} = \frac{\pi}{16} \times 65 \times d_{0}^{3} \times (1-0.6^{4})$	02 Marks
d ₀ = 51.97 =55mm	UZ WAIRS
di = 0.6× 55 =33 mm	