

(Autonomous) (ISO/IEC - 27001 - 2013 Certified)

SUMMER – 19 EXAMINATION

Subject Name: Thermal Engineering Model Answer Subject Code: 22337

Important Instructions to examiners:

- 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills.
- 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
- 6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.

1.	Attempt	any <u>FIVE</u> of the	following:		10 Marks
a)	Different	iate between H	leat and Work.		
Sol.	Differen Ans:	tiate between h	eat and work.		
	Sr.No.	Parameter	Heat	Work	
	1.	Definition	Form of energy that is transferred between system and surrounding or two systems due to temperature difference	The amount of energy transferred by a force acting though a distance	Any 2 point 1 marks for each Point of difference
	2.	Function	Heat is a function of the state	Heat is a function of the Path	
	3.	Energy Interaction	Due to Temperature Difference	Other than Temperature difference	
b)	State Cla	ausius statemer	nt of second law of thermod	ynamics.	
Sol.	a cyclic lemperate expendit	Process without a cure to a body at a	tate that "It is impossible for a samy external force, to transfer he higher temperature. Thus extends transfer heat from a body at a	eat from a body at a lower rnal mechanical work	1 mark
			Q_{R} Q_{A} Q_{A} $W=Q_{A} \cdot Q_{R}$ Q_{A} $W=Q_{A} \cdot Q_{R}$		1 mark

c)	Define dryness fraction and degree of superheat.		
Sol.	Dryness fraction:		
	It is defined as a fraction of dry steam that is present in a liquid vapour is called dryness	Any one	
	fraction.		
	Or	definition	
	Dryness fraction is the ratio of the Mass of actual dry steam to the Mass of wet steam.		
	$X = M_s/M_s+M_w$ Where $X - D$ ryness fraction		
	M_s – mass of vapour (dry steam) contain in steam		
	$M_w = mass of water in suspension in steam$		
	Degree of Superheat:		
	The difference between the temperature of superheated steam and saturated steam (T_{sup} –	1 mark	
	T_{sat}) is known as degree of superheat.		
d)	Define Mach number and critical pressure.		
	-		
Sol.	1. Mach Number: In fluid dynamics, the Mach number (M or Ma) is a dimensionless quantity representing the ratio of flow velocity past a boundary to the local speed of sound.		
	quantity representing the ratio of now velocity past a boundary to the local speed of sound.	1 mark	
	M = c/a		
	Mie the Meek number a ie the least flammateriate a ie the count of the		
	M is the Mach number, c is the local flow velocity, a is the speed of sound in the medium		
	2. Critical Pressure: The Pressure for which the maximum discharge through nozzle		
	occurs is called as critical pressure. It is denoted as P _c		
9)			
e)	Explain bleeding of steam.		
Sol.	It is process of draining steam from turbine at certain point during its expansion and using		
	these steams for heating the feed water supplied to boiler is known as bleed and the	1 mark	
	process is known as bleeding of steam.		
	← Turbine		
	<u> </u>		
	Condense		
		_	
	Bleed Steam	1 mark	
	Boiler→ ()		
	∠ Cooling		
	† i i . I		
	Figure: Bleeding of steam		
f)	State Dalton's law of partial pressure.		
Sol.	This law states that "The total pressure exerted by a mixture of air and water vapour on the		
	walls of container is the sum of partial pressure exerted by air separated and that exerted	01 mark	
	by vapour separately at common temperature of the condenser".		
	P = Pa + Ps		
	Where	01 mark	
	Pa= partial pressure exhausted by air	V Z ZIIWI IX	
	Ps = partial pressure exhausted by vapour		
	P = total pressure of mixture at temperature.		

g)	Define Fourier's law.	
Sol.	The law state that for homogeneous material the rate of heat transfer in steady state in any direction is directly proportional to temperature gradient in that direction.	01 mark
	Q/A α dt/dx	01 mark
	Q/A = -k dt/dx Where, Q/A is rate of heat transfer	
	dt/dx is temperature gradient	
	k conductivity of medium	
.2.	Attempt any <u>THREE</u> of the following:	12 Marks
a)	State extensive property and Intensive property with two examples each.	
Sol.	Extensive property:- An extensive property of a system is one whose value depend upon the mass of the system. e.g. volume, energy, enthalpy, entropy, internal energy.	1 mark
		1 mark
	Intensive property:- An intensive property of a system is one whose value does not depend upon the mass of the system.	
	e.g. Density, Temperature, Pressure	1 mark 1 mark
b)	Define isentropic process and plot it on, P-V and T-S diagram.	
Sol.	Isentropic Process: The process in which working substance neither receives nor rejects heat to its surrounding during expansion or compression is called as Isentropic process, it is also known as adiabatic process. Adiabatic process reversible when it is frictionless and the process is irreversible when it involves friction . Process is denoted by equation $PV^{\gamma} = C$	2 marks
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2 marks (1 Mark fo each Dig.)

	Define:	;			
	(i) Sens	sible heat			
	(ii) La	tent heat			
Sol.	i) Sens				
		nt in which change in ged that heat is know		n be observed but phase remains	1 mark
	This he	at can be sensed by o	rdinary thermometer, It is give	en by the equation	
	Sensible	e heat = m Cp (T_2-T_1))		
	m is ma	ass			
	Cp is S	pecific heat at constar	nt pressure		1 mark
	T ₁ is In	itial Temperature			1 mark
	T ₂ is Fi	nal Temperature			1 mark
	ii) Later	nt Heat:			1 mark
	It is define as amount of heat required for the change of phase of 1 kg of water at saturated temperature to dry saturated steam at constant pressure.				
	It is den	1 mark			
	Heat at				
	Heat at				
d)	Differentiate water tube boiler and fire tube boilers (any four)				
Sol.	C				
Sol.	Sr. No.	Parameter	Water tube boiler	Fire tube boiler	
Sol.		Parameter Medium in tube	Water tube boiler Water is circulated in tube and hot gases passed over the tube	Hot gases are circulated through the tube and water flows over tube.	
Sol.	No.		Water is circulated in tube and hot gases passed over the tube Steam formation rate is	Hot gases are circulated through the tube and water	1 mark for each point
Sol.	No. 1.	Medium in tube Steam Formation	Water is circulated in tube and hot gases passed over the tube	Hot gases are circulated through the tube and water flows over tube.	each point
Sol.	2. 3. 4.	Medium in tube Steam Formation Rate Steam Pressure Operating cost	Water is circulated in tube and hot gases passed over the tube Steam formation rate is high It can generate steam at higher pressure more than 25 bar Operating cost high	Hot gases are circulated through the tube and water flows over tube. Steam formation rate is low Generate steam at lower pressure up to 25 bar Operating cost low	each point
Sol.	2. 3. 4. 5.	Medium in tube Steam Formation Rate Steam Pressure Operating cost Overall efficiency	Water is circulated in tube and hot gases passed over the tube Steam formation rate is high It can generate steam at higher pressure more than 25 bar Operating cost high Overall efficiency high	Hot gases are circulated through the tube and water flows over tube. Steam formation rate is low Generate steam at lower pressure up to 25 bar Operating cost low Overall efficiency low	each point
Sol.	2. 3. 4.	Medium in tube Steam Formation Rate Steam Pressure Operating cost Overall efficiency Cleaning and	Water is circulated in tube and hot gases passed over the tube Steam formation rate is high It can generate steam at higher pressure more than 25 bar Operating cost high Overall efficiency high Cleaning and Inspection is	Hot gases are circulated through the tube and water flows over tube. Steam formation rate is low Generate steam at lower pressure up to 25 bar Operating cost low Overall efficiency low Cleaning and Inspection is	each point
Sol.	2. 3. 4. 5.	Medium in tube Steam Formation Rate Steam Pressure Operating cost Overall efficiency	Water is circulated in tube and hot gases passed over the tube Steam formation rate is high It can generate steam at higher pressure more than 25 bar Operating cost high Overall efficiency high	Hot gases are circulated through the tube and water flows over tube. Steam formation rate is low Generate steam at lower pressure up to 25 bar Operating cost low Overall efficiency low Cleaning and Inspection is difficult Low to medium power	each point
Sol.	No. 1. 2. 3. 4. 5. 6.	Medium in tube Steam Formation Rate Steam Pressure Operating cost Overall efficiency Cleaning and Inspection	Water is circulated in tube and hot gases passed over the tube Steam formation rate is high It can generate steam at higher pressure more than 25 bar Operating cost high Overall efficiency high Cleaning and Inspection is easy	Hot gases are circulated through the tube and water flows over tube. Steam formation rate is low Generate steam at lower pressure up to 25 bar Operating cost low Overall efficiency low Cleaning and Inspection is difficult	

The function of governor is to regulate the supply of steam to the turbine so that the speed of rotation shall remain constant at all loads. Nozzle control governing: 02 mar Figure	<u>a</u>)	State the term governing of turbine and explain nozzle control governing.	
Figure: Nozzle control governing The arrangement of nozzle control governing is shown in figure. The poppet type valve uncover as many steam passages as necessary to meet the load, each passage serving a group of nozzle. The control governor has the advantage of using steam at full boiler pressure. The nozzles are divided into three groups N ₁ , N ₂ and N ₃ and the control valves V ₁ , V ₂ and V ₃ controls the amount of steam supply to each nozzle group respectively. The number of nozzle group may vary from three to five or more. Various arrangements of group nozzles and valves can be employed. Two arrangements are shown in figure (b) & (c). Under full load condition all the regulating valve are opened. When the load		Governing of turbine: The function of governor is to regulate the supply of steam to the turbine so that the speed of rotation shall remain constant at all loads.	01 mark 02 marks for Figure
Figure: Nozzle control governing ✓ The arrangement of nozzle control governing is shown in figure. ✓ The poppet type valve uncover as many steam passages as necessary to meet the load, each passage serving a group of nozzle. ✓ The control governor has the advantage of using steam at full boiler pressure. ✓ The nozzles are divided into three groups N₁, N₂ and N₃ and the control valves V₁, V₂ and V₃ controls the amount of steam supply to each nozzle group respectively. ✓ The number of nozzle group may vary from three to five or more. Various arrangements of group nozzles and valves can be employed. Two arrangements are shown in figure (b) & (c). ✓ Under full load condition all the regulating valve are opened. When the load		(a) V_{1} V_{2} V_{3} V_{4} V_{3} V_{3} V_{3} V_{4} V_{3} V_{4} V_{3} V_{4} V_{3} V_{4} V_{3} V_{4} V_{3} V_{4} V_{4} V_{3} V_{4} V_{5} V_{5} V_{7} V_{8} V_{8} V_{9} V_{1} V_{1} V_{1} V_{2} V_{3} V_{4} V_{3} V_{2} V_{1} V_{2} V_{3} V_{3} V_{4} V_{3} V_{2} V_{1} V_{2} V_{3} V_{3} V_{2} V_{3} V_{4} V_{3} V_{2} V_{1} V_{2} V_{3} V_{3} V_{4} V_{3} V_{4} V_{3} V_{5} V_{7} V_{8} V_{1} V_{1} V_{2} V_{3} V_{3} V_{4} V_{3} V_{4} V_{3} V_{4} V_{5} V_{5} V_{7} V_{7} V_{8} V_{1} V_{1} V_{1} V_{2} V_{3} V_{3} V_{4} V_{3} V_{5} V_{5} V_{7} V_{8} V_{1} V_{1} V_{2} V_{3} V_{3} V_{4} V_{5} V_{7} V_{8} V_{1} V_{1} V_{2} V_{1} V_{2} V_{3} V_{3} V_{4} V_{3} V_{5} V_{5} V_{7} V_{8} V_{1} V_{1} V_{2} V_{3} V_{3} V_{1} V_{2} V_{3} V_{3} V_{4} V_{5} V_{5} V_{7} V_{8} V_{1} V_{1} V_{2} V_{3} V_{3} V_{4} V_{5} V_{5} V_{7} V_{8} V_{1} V_{1} V_{2} V_{3} V_{3} V_{4} V_{5} V_{5} V_{7} V_{7} V_{7} V_{8} V_{8} V_{1} V_{1} V_{2} V_{3} V_{3} V_{4} V_{5} V_{5} V_{7}	01 mark explanation
 ✓ The arrangement of nozzle control governing is shown in figure. ✓ The poppet type valve uncover as many steam passages as necessary to meet the load, each passage serving a group of nozzle. ✓ The control governor has the advantage of using steam at full boiler pressure. ✓ The nozzles are divided into three groups N₁, N₂ and N₃ and the control valves V₁, V₂ and V₃ controls the amount of steam supply to each nozzle group respectively. ✓ The number of nozzle group may vary from three to five or more. Various arrangements of group nozzles and valves can be employed. Two arrangements are shown in figure (b) & (c). ✓ Under full load condition all the regulating valve are opened. When the load 	ı		
		 ✓ The arrangement of nozzle control governing is shown in figure. ✓ The poppet type valve uncover as many steam passages as necessary to meet the load, each passage serving a group of nozzle. ✓ The control governor has the advantage of using steam at full boiler pressure. ✓ The nozzles are divided into three groups N₁, N₂ and N₃ and the control valves V₁, V₂ and V₃ controls the amount of steam supply to each nozzle group respectively. ✓ The number of nozzle group may vary from three to five or more. Various arrangements of group nozzles and valves can be employed. Two arrangements are shown in figure (b) & (c). ✓ Under full load condition all the regulating valve are opened. When the load 	
b) Explain principle of working of Impulse steam turbine with neat sketch.	b)	Explain principle of working of Impulse steam turbine with neat sketch.	

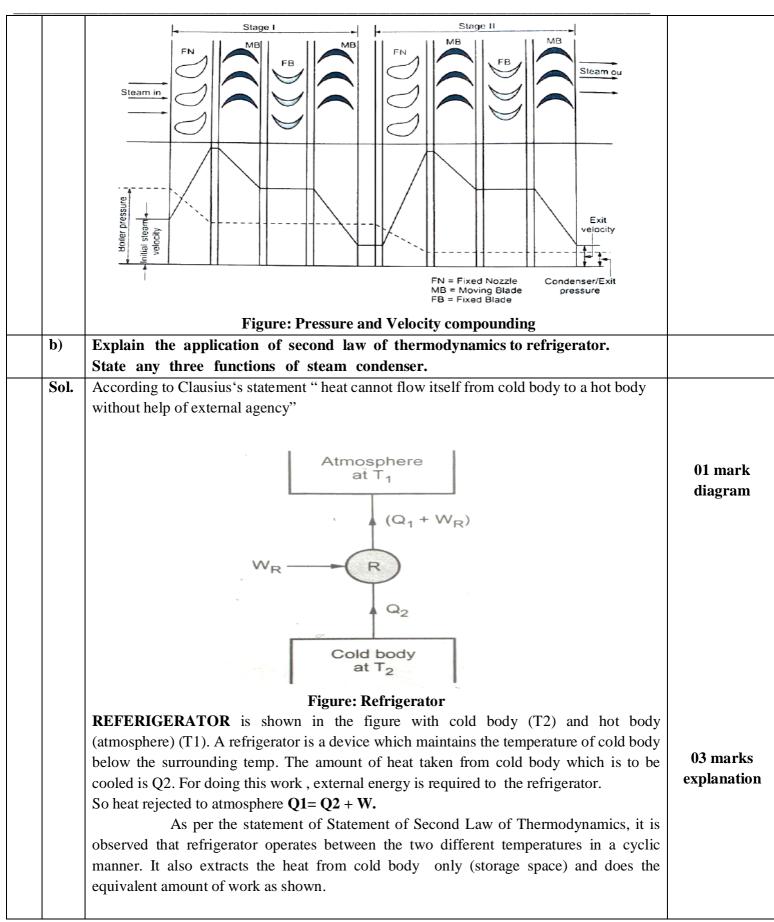
Sol.	Nozzle Steam in 6 7	02 marks for figure
	MB = Moving Blade Figure: Impulse Turbine	02 marks for explanation
	Construction: Impulse turbine is simpler, less expensive and does not need to be pressure proof. It can operate with any pressure stream but is considerably less efficient. Impulse turbine consist of one fixed set of nozzle mounted on a stationary diaphragm that orient the steam flow into high speed jets, which is followed by one set of moving blade ring as shown in Fig. for a single stage impulse turbine.	
(c)	A gas occupying $0.26~\text{m}^3$ at 300°C and $0.4~\text{MPa}$ pressure expands till volume becomes $0.441~\text{m}^3$ and pressure $0.26~\text{MPa}$. Calculate the change in internal energy per kg of gas. $C_p = 1~\text{kJ/kg}~\text{K},~C_y = 0.71~\text{kJ/kg}~\text{K}.$	

Sol.	φ.3		
	Gold:		
	Given data:		
	V, = 0.26 m3 7, = 800 C = 300+273 = 573 K		
	$P_1 = 0.4 \text{MPa}$		
	$V_2 = 0.441 \text{ m}^3$		
	P2 = 0.26 MPa		
	Cp=1 kJ KgK , CV=0.71 kJ KgK		
	Assume Temperature is constant		
	30,		
	The change in internal energy = du = 0	02 1	
	08	02 marks	
	Assume Adiabatic process,		
	1		
	Pvr=c		
	12.		
	2		
	V		
	Figure: P-V 4.7-s diagram of Adiabatic process		
	Y = (P) = 1.4 Ps on isentropic index.		
		02 marks	
	The change in internal energy = mcv(T2-T1)	02 marks	
	$T_2 = T_1 \times \left(\begin{array}{c} \checkmark \\ \checkmark \end{array} \right) = 300 \left(\begin{array}{c} 0.26 \\ 0.441 \end{array} \right)$		
	(12)		
	= 242.836 C		
	The change in internal energy = 1KO.71x(242-836-300)=-40.586 KJ/kg		
	The negative sign indicates that internal energy is decreasing.		
d)	Determine the amount of heat supplied to 2kg of water at 25°C to		
	convert it into steam at 5 bar and 0.9 dry.		

Sol	•		Va I				
		B	ાલાત કરા":				
			Given data:	_			
			mass of water = 1	Mus 2 kg			
			Temp of water = "	- C			
			Steams at 5 bas and doyne	33 1. 40.1101)	01 mark		
			Heat in water = mw Cpw	Δt	01 mark		
			= 2×4·1877	Several Company of the Company of th			
			= 209.35	AND COLUMN TO THE COLUMN TO TH			
					01 mark		
			From steam table at 5 bo	ne .			
			hf = 640.1 kg/kg h	fg = 2107.4 tolk9			
			So,				
			Heterm = hfthfaxx				
			= 640.1 + 0.9 12	107-4			
			= 2536.76 KJ L	9			
				92			
			for 2kg, heat required =	2 × 2536.76	01 mark		
				5073.53 KJ			
		-	- Amount of heat Supplied	= 5073.53 -209.35	01 mark		
			*	= 4864·17 kJ			
		2-12					
	Q.4.	Attempt a	ny <u>THREE</u> of the following:		12 Marks		
	a)	Differenti	ate between natural draught and forced d	lraught cooling tower.			
Sol	•	Sr. No.	Natural draught	Forced draught	01 mark for		
		1	The air flows naturally without fan	Fan is located at the top of the	each		
			through tower and provides required	tower and enters the side of the	differentiation		
		2	The sir circulation through the tower	tower. The air airculation through the			
			The air circulation through the tower depends on wind velocity.	The air circulation through the tower depends on fan speed.			
		3	The cooling Rate and efficiency of tower	The cooling Rate and efficiency			
			is less.	of tower is high.			
		4	It requires large space for same capacity.	It requires less space for same			
				capacity.			
		5	No power requires due to absence of fan.	Fan requires more power as it			
				handles hot air.			
		6	The temp. of water coming out from	The temp. of water coming out			

_	tower cannot be controlled. from tower can be controlled.	
b)	A gas has a volume of 0.14 rn ³ , pressure 1.6 bar and a temperature	
	110°C. If the gas is compressed at constant pressure until its volume becomes	
	0.112 m³ Determine:	
	i. Work done in compression of gas	
Sol.	ii. heat given out by gas	
501.	Q. 4.b.	
	Solne	
	Given data :	
	$V_1 = 0.14 \text{ m}^3$	
	P1 = P2 = 1.6 bar = 1.6 × 105 N/m2	
	T1 = 110 + 273 = 383 K	
	$V_2 = 0.112 \text{ m}^3$	
	Assume Cp=1 kJ tgk	
	T 2	01 mark
	<u> </u>	
	figure :- P-V 4 T-s diagram of Esoparic process	
	P1V1 _ P2Y2	
	T ₁ T ₂	01 mouls
	$T2 = V2 \times T_1 \implies 0.112 \times 383$	01 mark
	V1 0.14	
	$T_2 = 306.4 \text{ K}$	
	1) Work done in compression of gas	
	dw = P CV2-V1)	
	$= 1.5 \times 10^{5} \times (0.112 - 0.14)$	01 mark
	= -4480 J	VI IIIai K
	= -4.48 KJ	
	2) Heat given out by gas $dQ = du + dw = mcp(T_2 - T_1)$	04
		01 mark
	$= 1 \times 1 \times (806.4 - 383)$	
	= -76.6 KJ.	
c)	A certain gas has $C_p = 1.968 \ kJ/kg \ K \ C_y = 1.507 \ kJ/kg K$. Find the	
	molecular weight and the gas constant. A constant volume chamber of	

	the g		s gas at 5°C. Heat is transferred of O°C. Fmd the work done and chang			
Sol.		9.4·c. Sol.h.				
		Given data:	1 2 1	01 1 1		
		Cp = 1.968 K5 kg k	3) Heat transfer = 9 =	01 mark each		
		Cv = 1.507 kJ kg k	g = mcv(T2-T1)	answer		
		Constant volume, V, =0-3 m3	=2×1+507×(373-278)			
		m = 2 kg	±28(·33 K) 19			
		71 = 5° + 273 = 278 k	Ale to first law of thermodynamics			
		T2 = 100 c+273 = 373 K				
		Find, Work done (W)	dq= AU+W .			
		Weat towns fer (9) 4	but N = 0			
		Change in internal energy (du)	:. do: AU			
		Change in arrand salesy Casy	4) change in internal energy			
		Dans constant, R=Cp-Cy	AU = 286.33 KS kg			
		=1-968-1-507	127			
		= 0.461 Ks 129'k	Heat Supplied & used to			
			increased the Internal energy.			
		MR = 8.3143				
		Molecular weight &				
		M = 8:3143	~			
		0.461				
		=18 kg				
		a) Mork done = W= Pdy				
		As constant valume Chamber				
		dv = 0				
		So, Work done = W = 0				
d	i.	Transmissivity				
	ii.	Black body				
	iii.	Grey body				
	iv.	Reflectivity				
Sol.	Trans	Transmissivity:				
	It is th	It is the the fraction of energy which is transmitted through the body. Or The ratio of amount of energy transmitted to the amount of energy incident on a body.				
		body: A black body is an object that all the from all the direction with all the way	bsorbs all the radiant energy reaching its velengths. Gray body:			
			y whose absorptivity of a surface does not ength of the incident radiation. It absorbs a			



		(ISO/IEC - 27001 - 2013 Certified)	
		definite percentage of incident energy irrespective of wavelength. Its absorptivity lies between 0 to 1.	
		Reflectivity: It is defined as the ratio of amount of energy reflected to the amount of energy incident on a body.	
	e)	Draw a neat sketch of surface condenser and label it.	
Sol.		Exhaust steam	
		Water Tubes Plate Outlet Baffle plate	02 marks for Sketch
		Water inlet Condensate to extraction pump	02 marks for label.
		Figure: Surface Condenser	
Q	.5.	Attempt any TWO of the following:	12 Marks
	a)	List out any six losses in steam turbine.	
	Sol.	Losses in steam turbine 1. Residual velocity loss 2. Loss due to friction 3. Leakage loss 4. Loss due mechanical friction 5. Radiation loss 6. Loss due to moisture 7. carry over losses	
	b)	As teel pipe of inner and outer diameter 6 cm and 8 cm respectively has inside temperature 140°C and outside' temperature 50°C. The thermal conductivity of steel is 24 <i>W/mk</i> . Calculate the rate of heat transfer through the pipe if length of pipe is 1.5 m.	
	Sol.	Given Data: Length of pipe = L=1.5 m, Inner diameter, d1=6 cm, Outer diameter, d2= 8 cm Inside temp T1 = 140° C, Outside temp T2 = 40° C, Ksteel = 24 W/Mk $Q = \frac{T1 - T2}{\frac{1}{2\pi LK} log \frac{r2}{r1}}$	02 marks
			02 marks

	$Q = \frac{1}{(2\pi x 1.5x24)} \log \frac{4}{3}$	02 mark
	$Q = \frac{100}{1.272 \times 10^{-3}}$	
	Q =78616.35 Watts or 78.62 KW	
c)	List any SIX methods of energy conservation in boilers.	
Sol.	List any six methods of energy conservation in boilers	01 mark ea
	Following methods can conserve energy in boilers	
	Reduction radiation and convention losses	
	2) Waste heat recovery for heating to the feed water.	
	3) Continues monitoring of flue gases losses and other losses	
	4) Using standard efficient fuel firing equipments, burners, mechanical stockers.	
	5) Scheduling boiler operation to avoid fluctuation in boiler load	
	6) Installation of variable speed drives.	
	7) Optimise boiler stem pressure and temperature	
	8) Periodic energy audit.	
	Periodic preventive maintenance of all components.	
.6.	Attempt any <u>TWO</u> of the following:	12 Mark
a)	Explain the necessity of compounding in steam turbine and draw a neat	
	sketch of pressure velocity compounding.	
Sol.	Necessity of compounding in steam turbine: Compounding of steam turbines is	
	necessary 1) To reduce speed of rotor blades to practical limits.	
	2) To reduce centrifugal force and hence to prevent failure of blades.	03 marks
	3) To reduce velocity of steam leaving blades.	
	If entire pressure drop from boiler pressure to condenser pressure is carried out in a single	
	stage of nozzle then the velocity of steam entering the turbine blades will be very	
	high. The turbine speed has to be also very high as it is directly proportional to steam	
	velocity. Such high rpm of turbine rotor are not useful for practical purposes & there is a	
	danger of structural failure of blades due to excessive centrifugal stresses. Hence	
	compounding is carried out.	
	Neat sketch of pressure velocity compounding.	
		03 marks f
		figure
		iiguic
		ngure
		ngure

	In a full cycle of a refrigerator, three things happen:	
	1. Heat is absorbed from cold body, the heat can be called Q2.	
	2. Some of the energy from that input heat is used to perform work (W).	
	3. The rest of the heat is rejected to hot body (Q1).	
	An performance of the refrigerator can be calculated as: Efficiency = Q1 / work W	
	So it is cleared that the external energy is required to absorb heat from cold body and to	
	reject it to hot body.	
	Function of condenser:	02 marks
		UZ IIIAI KS
	1) To maintain a very low back pressure so as to obtain the maximum possible	
	energy from steam and thus secure a high efficiency.	
	2) To condense the steam and reuse it to supply as pure feed water to the hot well	
	from where it is pumped back to the boiler.	
,	3) To remove of air and non-condensable gases	
c)	Derive characteristic gas equation using Boyle'S and Charle's law.	
Sol.	Characteristic gas equation using Boyle's & Charle's law:	
	Let us consider a unit mass of an ideal gas to change its state in following two processes as	01 mark for
	shown in fig.	each step
	₽.4	
	P = C	
	1 2'	
	T = C	
	2	
	→ V	
	Have process 1.2' is at constant processes	
	Here, process 1-2' is at constant pressure	
	Process 2'-2 is at constant temperature	
	Now, applying Charle's law for process 1-2'	
	We get	
	$\frac{V1}{T1} = \frac{V2'}{T2} as(T2' = T2) \dots (I)$	
		01
	Now, applying boyle's law for process 2'-2,	01 mark
	P2' V2 = P2 V2 (T=C)	
	P1 V2'=P2 V2 (As P2'= P1)	
	$V2' = \frac{P2 V2}{P1} \dots \dots \dots \dots \dots (II)$	01 mark
	LT.	
	Substituting eq (II) IN eq (I), We get	
	V1 P2 V2	
	$\frac{1}{T1} = \frac{1}{P1} \frac{1}{T2}$	
		i

(Autonomous) (ISO/IEC - 27001 - 2013 Certified)