

WINTER – 2018 EXAMINATION MODEL ANSWER

Subject: BASIC ELECTRONICS

Subject Code:

22225

Important Instructions to examiners:

- 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills).
- 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
- 6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.

Q.	Sub	Answer	Marking
No	Q.N.		Scheme
1.		Attempt any FIVE of the following:	10
	(a)	Draw the symbol of inductor and capacitor. State the	2M
		unit of inductor and capacitor.	
	Ans.	Symbol of Inductor:	Each
		or OR or	symbol ½ M
		Symbol of Capacitor:	Each
		$\frac{1}{7} OR \frac{1}{7} OR \frac{1}{7} OR \frac{1}{7}$ Unit of Inductance : Henry OR H Unit of capacitance : farad OR F	Unit ½ M

Г

Subject: B	ASIC ELECTRONICS Subject Co	de:	22225
(b) An		Nee Def	2M d 1M ïnitio n IM
(c) An	-	E defi	2M ach nition IM
(d) An	JFET.	E defi	2M ach nition IM

WINTER – 2018 EXAMINATION MODEL ANSWER

Subject: BASIC ELECTRONICS

Subject Code: 22

22225

	Transconductance: The transconductance g_m is the change in the drain current for a given change in gate to source voltage with constant drain to source voltage. $g_m = \frac{\Delta I_D}{\Delta V_{GS}}$ keeping V_{DS} constant.	
(e)	State the two advantages and disadvantages of integrated circuits.	2M
Ans	 Advantages of Integrated circuits: Small in size due to the reduced device dimension. Low weight due to very small size. Low power requirement due to lower dimension and lower threshold power requirement. Low cost due to large-scale production. High reliability due to the absence of a solder joint. Increased speed. Easy replacement instead of repairing as it is economical. Higher yield, because of the batch fabrication. Disadvantages of Integrated circuits: IC resistors have a limited range. Generally inductors (L) cannot be formed using IC. ICs are delicate and cannot withstand rough handling 	Each advantag e and disadvant age - ½M
	Limited amount of power handling.Lack of flexibility.	
(f)	 Higher value capacitors cannot be fabricated. Define transducer and name two passive transducers. 	2M
Ans	Transducer is a device that converts one form of energy into another form of energy. A transducer is a device which converts a physical quantity such as temperature, pressure, displacement, force etc., into equivalent electrical quantity either voltage or current.	Definitio n 1M
	Examples of Passive transducers:RTDInductive transducers	Each Example ½M

(g)

Ans

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2005 Certified)

WINTER – 2018 EXAMINATION **MODEL ANSWER**

Subject: BASIC ELECTRONICS

22225 Subject Code: • Capacitive transducers • LVDT • LDR • Strain gauge • Thermisters State seebeck and Peltier effect. **2M** Seebeck effect: This states that whenever two dissimilar metals are connected together to form two junctions out of Each which, one junction is subjected to high temperature and Definitio another is subjected to low temperature then e.m.f is n induced and it is proportional to the temperature difference *1M* between two junctions. Peltier effect: This states that for two dissimilar metals in a closed loop, if current is forced to flow through, then one junction will be heated and other will become cool. OR It is the presence of heating of one junction and cooling of

		the other when electric current is maintained in a circuit of	
		material consisting of two dissimilar conductors.	
2.		Attempt any THREE:	12
	(a)	Determine the value of capacitance with the following	4M
		colour code.	
		(i) Orange, Orange, Blue	
		(ii) Yellow, Violet, Yellow	
	Ans.	(i) Orange, Orange, Blue	
		Colour coding:	
		Orange Orange Blue	
			Colour
			coding
			<i>1M</i>
		3 3 6	
		Value of capacitor: $33 \times 10^6 \text{ pF}$	
		$= 33 \times 10^6 \times 10^{-12} F$	
		$= 33 \text{ X} 10^{-6} \text{ F}$	
		$= 33 \mu F$	

WINTER – 2018 EXAMINATION MODEL ANSWER

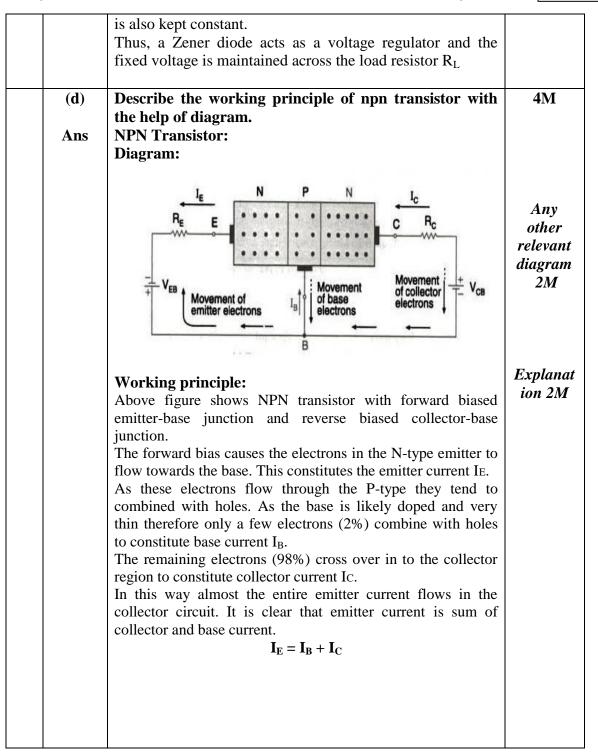
Subject: BASIC ELECTRONICS

Subject Code:

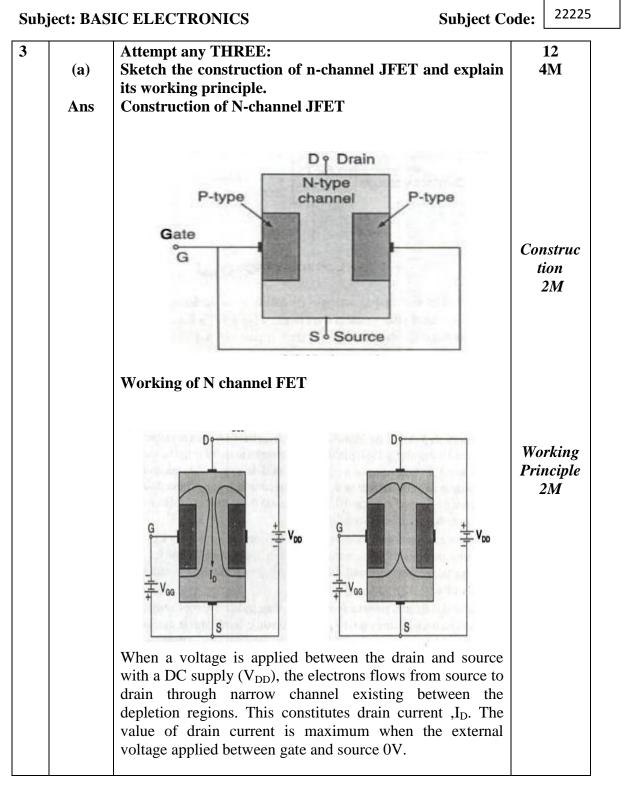
e: 22225

	ii) Yellow, Violet, Yellow Yellow Violet Yellow \downarrow \downarrow \downarrow \downarrow \downarrow 4 7 4 Value of capacitor : 47 X 10 ⁴ pF = 470KpF OR = 47 X 10 ⁴ X 10 ⁻¹² F = 47 X 10 ⁻⁸ F	Correct answer with unit 1M
(b)	= 0.47μF Draw the neat sketch of center tap full wave rectifier.	4 M
	Draw i/p and o/p waveforms.	-1741
Ans	Circuit Diagram	
	A.C. V_{10} Supply 10 $V_{s} = \frac{V_{2}}{2}$ $V_{s} = \frac{V_{2}}{2}$ $V_{s} = \frac{V_{2}}{2}$ $V_{s} = \frac{V_{2}}{2}$ $V_{s} = \frac{V_{2}}{2}$ $V_{s} = \frac{V_{2}}{2}$ $V_{s} = \frac{V_{2}}{2}$	Any other relevant circuit Diagram 2M Wavefor ms
	Input and Output Waveforms	2M
	Output voltage	

Subject: BAS	SIC ELECTRONICS Subject Co	ode:	22225
(c) Ans	Draw and explain zener diode as a voltage regulator. Zener diode as voltage regulator A reverse biased Zener diode is used to provide a constant voltage across the load resister R_L . The voltage regulator circuit diagram showing the Zener diode is as given below. R_s $Unregulated$ V_i I_z V_c $Regulated$ V_c	Dia	4M Agram 2M
	Regulation with varying input voltage: (Line Regulation) As the input voltage increases, the input current (I_s) increases. This increases the current through Zener Diode, without affecting the load current (I_L). The increase in input current will also increase the voltage drop across R_s and keeps V_L as constant. If the input voltage is deceased, the input current also decreases. As a result, the current through zener will also decrease. Hence voltage drop across series resistance will be reduced. Thus V_L and I_L remains constant.		olanat 1 2M
	Regulation with varying load resistance: (Load Regulation) The variation in the load resistance R_L changes I_L , thereby changing V_L . When load resistance decreases, the load current increases. This causes zener current to decrease. As a result, the input current and voltage drop across R_S remains constant. Thus, the load voltage V_L is also kept constant. On the other hand, When load resistance increases, the load current decreases. This causes zener current to increase. This again keeps the input current and voltage V_L		



WINTER – 2018 EXAMINATION MODEL ANSWER


Subject: BASIC ELECTRONICS

Subject Code: ²

22225

WINTER – 2018 EXAMINATION **MODEL ANSWER**

Subject: BASIC ELECTRONICS

voltage

22225 Subject Code: When the gate to source voltage (applied by V_{GG})is increased above zero, the reverse bias voltage across gate source junction is increased. The depletion region is widened. This reduces the width of the channel and thus controls the flow of current. The gate source voltage reaches a point where the channel gets completely blocked and the drain current becomes zero is called pinch- off

Ans	Parameters	Active	Passive	Any fou
		Transducer	Transducer	Compar
	Working	Operate under	Operate under	on
	Principle	energy conversion principle	energy controlling principle	1M eac
	Example	Thermocouple, Piezoelectric Transducer etc.	Thermistors, Strain Gauges etc.	
	Advantage	Do not require external power supply for its operation	Require external power supply for its operation	
	Application	Used for measurement of Surface roughness in accelerometers and vibration pick ups	Used for measurement of power at high frequency	
(c)	State the diffe specifications o		istors. State any four	· 4M

WINTER – 2018 EXAMINATION MODEL ANSWER

22225 **Subject Code:** Subject: BASIC ELECTRONICS Ans **Different types of Resistors:-**Classific ation 2M Resistor Linear Non-Linear Variable Type Fixed Type -Wire Wound Thermistor Carbon Composition LDR (Light Dependent Potentiometer Thin Film -Trimmers Resistor) -Thick Film Photo Resistor Wire Wound Varistor **Specifications of Resistor:-**Any four • Temperature Coefficient. **Specifica** • Size or value of a resistor tions of • Power Dissipation / wattage resistors • Tolerance 2M• Thermal Stability • Frequency Response. • Power De-rating. • Maximum Temperature. • Maximum Voltage. Explain the working of two stages RC coupled amplifier (**d**) 4Mwith neat circuit diagram. Ans Second stage First stage C1 Coupling Q, 0. ++ network Output AC Diagram Input RLS AC V. 2Msignal Vi \$R₂ signal C. REI

Sub	Subject: BASIC ELECTRONICS Subject Code			22225
4	(a) Ans	 Two stages are connected with R & C components called as RC Coupled amplifier. a) Resistor R_{C1}, R₃ & Capacitor C_C form the contwork. b) R₁, R₂, R₃, R₄ provide voltage divider bias to Q₁ + c) R_{C1}& R_{C2} provide V_{CE} to Q₁ & Q₂. d) R_{E1} & R_{E2} provide bias stabilization. Applications of RC Coupled Amplifier: Excellent frequency response from 50 Hz to 20 KHz very useful in the initial stage of all public address s Attempt any THREE: Explain any four selection criteria of transduct temperature measurement. Note: Any other relevant selection criteria si considered. 1. Ambient temperature range: It will impact on accuracy as we can easily predict the ambient temperature transformer taken from the sensor. 2. Stability & control precision requirement: If a requirement is far better than 20F, use an RTD and term stability is required an RTD is better choir Thermocouple. 3. Speed of response to temperature change requisipation of the sensor and stepped therm provide good speed of response. 4. Cost: Measurement failure most often response. 	coupling & Q2.Wa appon& Q2.appona so it is ystems.cers for hall be peratureAn Ca sel critic critic 	orking with plicati ps 2M 12 4M y four prrect ection iteria of nsduc ers I each
	(b)	Differentiate between P-N junction diode and diode.	zener	4M

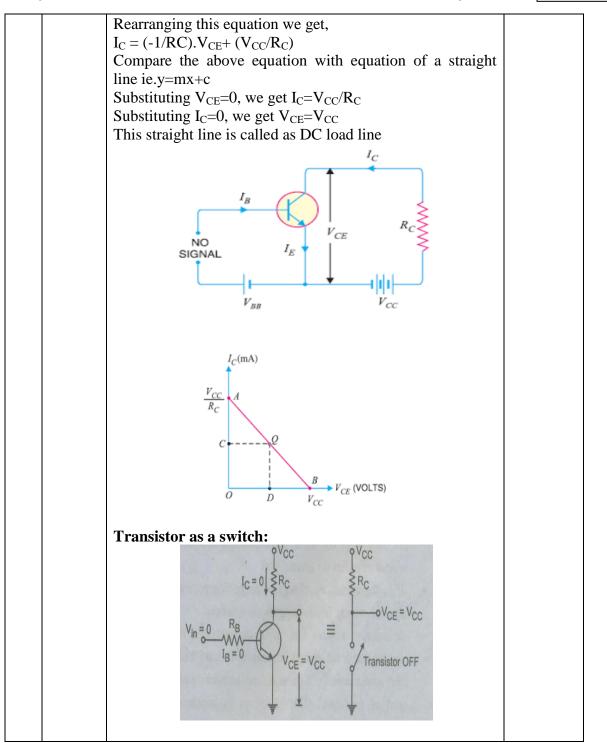
WINTER – 2018 EXAMINATION MODEL ANSWER

Subject: BASIC ELECTRONICS

Subject Code:

22225

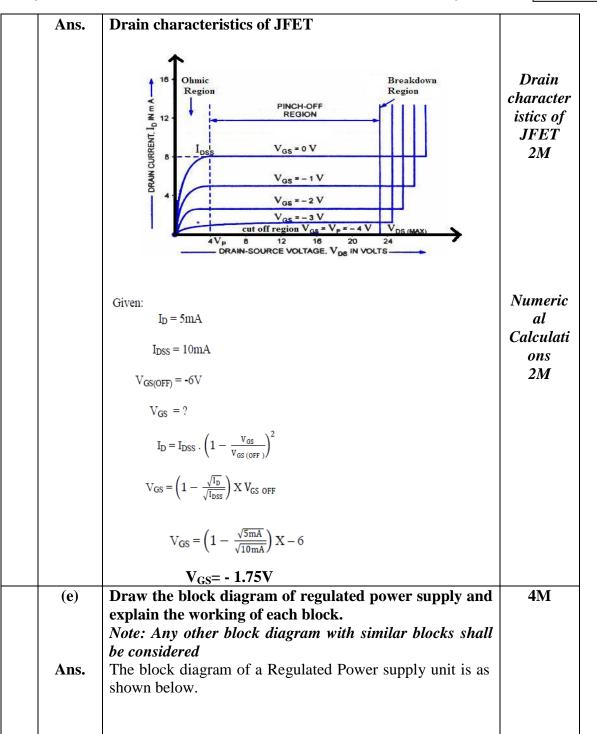
-


Ans	Sr.No.	PN Junction Diode	Zener Diode	
	1	It is not properly doped to control reverse breakdown.	It is properly doped to control reverse breakdown.	Any four Correct
	2	It conducts only in one direction.	It conducts in both directions.	Comparis on
	3	It is always operated in forward-bias condition.	It is always operated in reverse-bias condition.	1M each
	4	It has no sharp reverse breakdown.	It has quite sharp reverse breakdown.	
	5	It burns immediately, if applied voltage exceeds the breakdown voltage.	It will not burn, but functions properly in breakdown region.	
	6	It is commonly used for rectification purpose.	It cannot be used for rectification, but commonly used for voltage regulation.	
(c)		DC load line of transis tor as a switch.	tor. Explain working of	4M
Ans	V _{CEQ}) a 2. The amplify input of 3.To op voltage 4.To dr saturati The sa through voltage	at which it is biased. concept of Q-point is userving device and hence is of utput characteristics. perate the BJT at a point is and currents through ext raw DC load line of a trans on current and cutoff volta- turation current is the n	nsistor we need to find the age. naximum possible current rs at the point where the nimum.	DC loadline 2M Transisto r as a switch 2M

WINTER – 2018 EXAMINATION MODEL ANSWER

Subject: BASIC ELECTRONICS

Subject Code: 22225


WINTER – 2018 EXAMINATION MODEL ANSWER

22225 **Subject Code:** Subject: BASIC ELECTRONICS 1. Transistor in cut- off region is an open switch. Here V_{in} is 0 V. 2. In the cut –off region both the junction of a transistor are reverse biased and very small reverse current flows through the transistors. 3. The voltage drop across the transistor (V_{CE}) is high. Thus, in the cut off region the transistor is equivalent to an open switch as shown in figure. Vcc Ic= IC (sat) ≥R_C SRC $oV_{CE} = 0V$ Transistor in saturation In saturation the transistor is equivalent to a closed switch. When V_{in} is positive a large base current flows and transistor saturates. In the saturation region both the junctions of a transistor are forward biased. The voltage drop across the transistor (VCE) is very small, of the order of 0.2 V to 1V depending on the type of transistor and collector current is very large. Draw the Drain characteristics of JFET showing **(d)** 4Mdifferent operating regions. If drain current is 5mA, $I_{DSS} = 10mA$ & Vas (off) = -6V. Find the value of V_{as} . Note: V_{as} is considered as V_{GS}

WINTER – 2018 EXAMINATION MODEL ANSWER

Subject: BASIC ELECTRONICS

22225

Subject Code:

WINTER – 2018 EXAMINATION MODEL ANSWER

Subject: BASIC ELECTRONICS

230v AC C

Input Waveform

Supply

CONICS Subject Code: 22225 Transformer Rectifier Smoothing Regulator Load Diagram Diagram 2M Diagram 2M Diagram2M

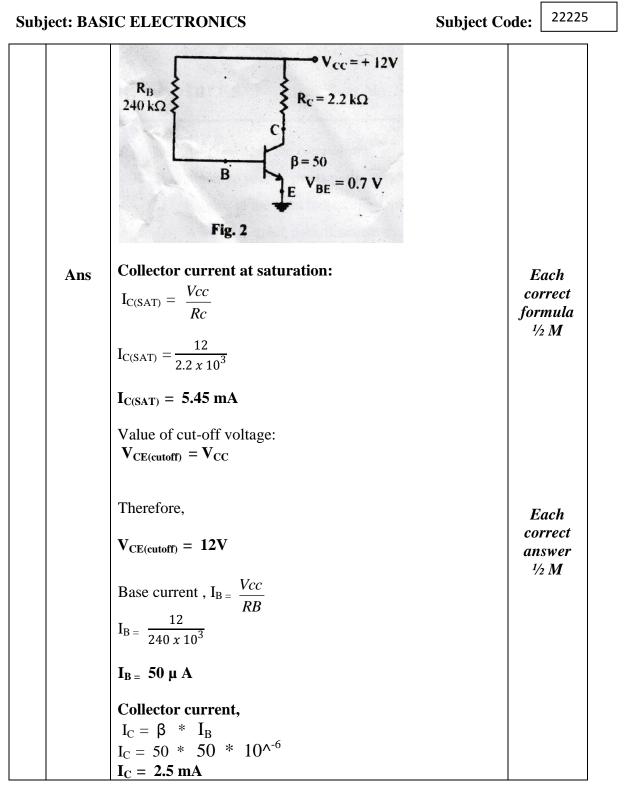
A typical Regulated Power supply unit consists of the following.

Transformer – An input transformer for the stepping
down of the 230v AC power supply.Working
of each
of each
block
2MRectifier – A Rectifier circuit to convert the AC
components present in the signal to DC components.Working
of each
block
2MSmoothing – A filtering circuit to smoothen the variations
present in the rectified output.Working
of each
blockRegulator – A voltage regulator circuit in order to controlWorking

 Regulator – A voltage regulator circuit in order to control the voltage to a desired output level.
 Load – The load which uses the pure dc output from the regulated output.

 Attempt any TWO
 1

WINTER – 2018 EXAMINATION MODEL ANSWER


Subject: BASIC ELECTRONICS

Subject Code:

22225 ٦

Ans	From given figure, 1. Amplitude = Vm = 4V 2. Frequency (f) = $\frac{1}{T}$	Each formula ½M
	$\frac{1}{2 x 10^{-3}}$ =500Hz 3. Phase: =0	Each final answer ½M
	4. Wavelength $\lambda = Vc/f = (3*10 \ 8)/500 = 6 \times 10^5 m$ (ii) Define: amplitude and frequency Amplitude: The maximum value (positive or negative) attained by an alternating quantity is called its amplitude or peak value. The amplitude of an alternating voltage or current is designated by V_m or I_m .	Each definition 1M
	Frequency: The number of cycles that occurs in one second is called the frequency (f) of the alternating quantity. It is measured in cycles/ sec or Hertz(Hz)	
(b)	(i) In the circuit shown in fig (2), a silicon transistor with β = 50 is used. Take V _{BE} = 0.7V. Find Q point value.	6M

WINTER – 2018 EXAMINATION MODEL ANSWER

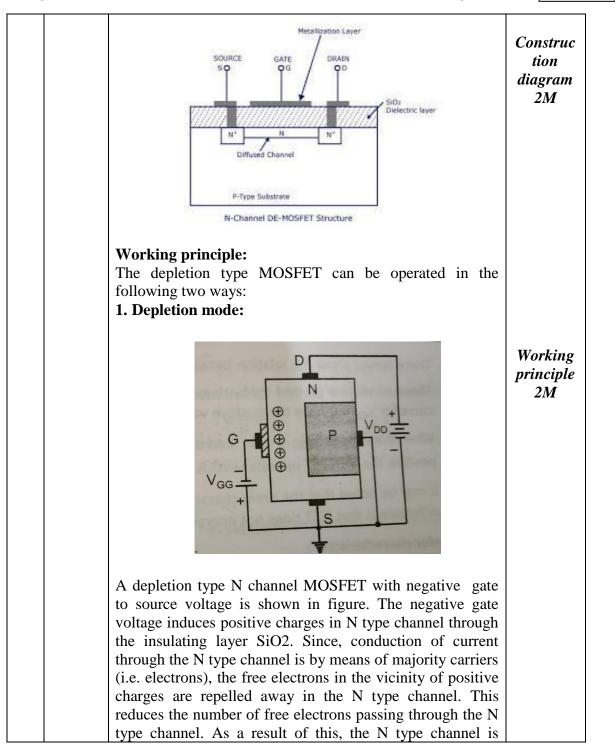
Subject: BASIC ELECTRONICS

	Collector to emitter voltage, $V_{CE} = V_{CC} \cdot (I_{C} * R_{C})$ $V_{CE} = 12 \cdot (2.5 * 10^{-3} * 2.2*10^{3})$ $V_{CE} = 6.5 V$ Q-points are $I_{CEQ} = 2.5 \text{ mA}$ $V_{CEQ} = 6.5 V$ Q-point is located on the D.C. load line as shown in figure. $\int_{0}^{TC} \int_{0}^{(mn)} \int_{0}^{0} \int$	
	 (ii) Define operating point of the transistor. Operating point: For proper operation of a transistor, in any application, we set a fix level of certain currents and voltages in a transistor. These values of currents and voltages define the point, at which transistor operates. This point is called operating points or quiscent points or Q points. 	Q point definition 1 M
(c) Ans	In full wave bridge rectifier $V_m = 10V$, $RL = 10K\Omega$. find out V_{DC} , I_{DC} , ripple factor and PIV. In full wave bridge rectifier: 1. $V_{DC} = 2V_m/\pi = 0.637 * V_m$ Therefore, $V_{DC} = 0.637 * 10$ $V_{DC} = 6.37 V$	6M Each formula 1M

22225

Subject Code:

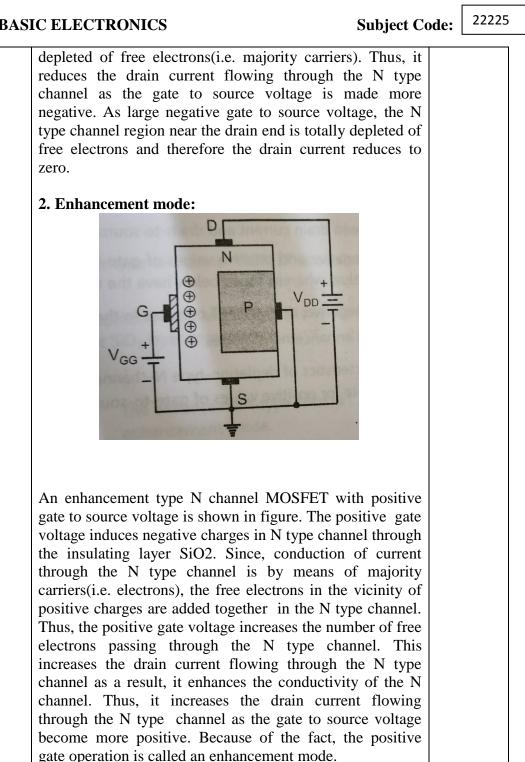
WINTER – 2018 EXAMINATION MODEL ANSWER


Subject: BASIC ELECTRONICS

Subj	ject: BAS	IC ELECTRONICS Subject Co	ode:	22225
Subj	ject: BAS	IC ELECTRONICS 2. $I_{DC} = 2I_m/\pi = \frac{2Vm}{\pi * RL}$ Therefore, $I_{DC} = \frac{2 \times 10}{\pi \times 10 \times 10^3}$ $I_{DC} = 0.636 \text{ mA}$ 3. Ripple factor $\sqrt{\frac{I_{rms-1}}{I_{DC}}} = \sqrt{\frac{I_{m/\sqrt{2}} - 1}{I_{DC}}}$ $\sqrt{\frac{V_m / RL \times \sqrt{2} - 1}{I_{DC}}}$ 7.07 x 10 ⁻⁴ Therefore, Ripple factor = 0.331 4. PIV = Vm	E fi an	Cach inal pswer 2 M
6	(a) Ans	Therefore, PIV= 10 V Attempt any TWO: Explain working principle of N-channel depletion type MOSFET with construction diagram. Compare depletion type MOSFET & enhancement type MOSFET.		12 6M

WINTER – 2018 EXAMINATION MODEL ANSWER

Subject: BASIC ELECTRONICS


22225

Subject Code:

WINTER – 2018 EXAMINATION **MODEL ANSWER**

Subject: BASIC ELECTRONICS

WINTER – 2018 EXAMINATION MODEL ANSWER

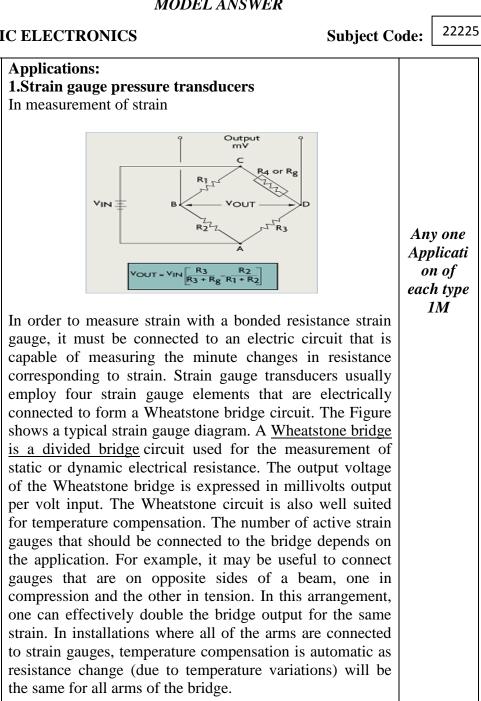
Subject: BASIC ELECTRONICS

Subject Code:

22225

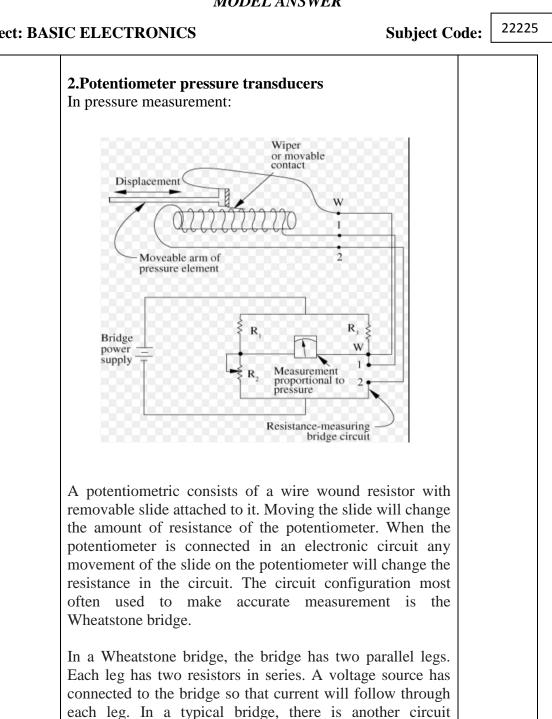
-

Sr. No.	Depletion type MOSFET	Enhancement type MOSFET	Comparis
1	Gate(G)	Gate(G) Source(S) N- Channel	on Any four points 2M
	P- Drain(D) Jo Gate(G) Vc Vc Source(S)	Drain(D) NICS H O Substrate Gate(G) Source(S)	
2	Channel An insulating oxide layer is present between gate and channel.	P- Channel An insulating oxide layer is present between gate and substrate.	
3	N or P type channel is present.	0	
4	For N channel V_{GS} = negative (for depletion mode) V_{GS} = positive (for enhancement mode)	For N channel V_{GS} = only positive	
5		For N-channel, If V_{GS} is more positive, drain current increases more.	



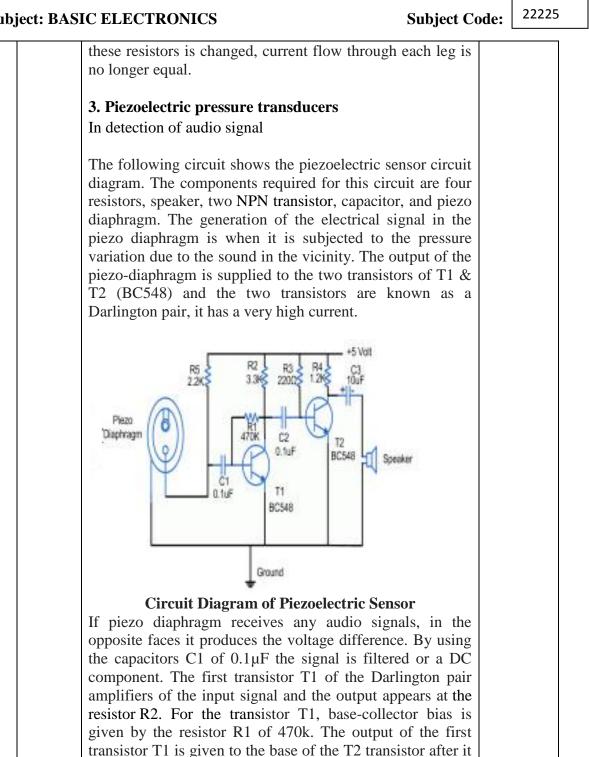
(b) Ans	Diffe (i) In (ii) O (iii) C (iv) V (v) Pl (vi) A	6M				
AIIS	Sr. No	Parameter	СВ	CE	CC	Each point 1M
	1	Input resistance	Very low (20Ω)	Low(1K Ω)	High (500K Ω)	
	2	Output resistance	Very high (1M Ω)	High(40K Ω)	$ \begin{array}{c} \text{Low}(50\\ \Omega) \end{array} $	
	3	Current gain	Less than unity	High (20 to few hundred)	High (20 to few hundred)	
	4	Voltage gain	Medium	Medium	Less than unity	
	5	Phase shift between input and output	0	180°	0	
	6	Application s	As pre- amplifier	As Audio amplifier	For impedance matching	
(c)	descr Note:	ibe one applio	cation of eac granted for	h one. <i>stating the d</i>	nsducers and application of description	
Ans	Type 1.Stra 2.Pot 3.Piez 4. Re 5. Ca	Any four Types 2M				

WINTER – 2018 EXAMINATION **MODEL ANSWER**


Subject: BASIC ELECTRONICS

WINTER – 2018 EXAMINATION **MODEL ANSWER**

Subject: BASIC ELECTRONICS



installed here. When the resistance of all four resistor is exactly equal the current flow through each leg is equal. In this condition, the bridge is balanced. However, if one of

WINTER – 2018 EXAMINATION **MODEL ANSWER**

Subject: BASIC ELECTRONICS

WINTER - 2018 EXAMINATION **MODEL ANSWER**

Subject: BASIC ELECTRONICS

ressure input

> Diaphragm plate

> > Bridge

WINTER – 2018 EXAMINATION MODEL ANSWER

Subject: BASIC ELECTRONICS

Subject Code: 22225

In this arrangement, in place of movable plate, diaphragm	
is used, which expands and contracts due to change in	
pressure. The diaphragm plate acts as a movable plate of a	
capacitor. A fixed plate is placed near the diaphragm.	
These plates form a parallel plate capacitor which is	
connected as one of the arms of a bridge. Any change in	
pressure causes a change in distance between the	
diaphragm and fixed plate, which is unbalances the bridge.	
The voltage output of the bridge corresponds to the	
pressure applied to the diaphragm plate.	